THE ART OF
COMPUTER PROGRAMMING

VOLUME 4 PRE-FASCICLE 9B

A POTPOURRI
OF PUZZLES

DONALD E. KNUTH Stanford University

A
ADDISON-WESLEY vv

October 31, 2020

Note to readers:

Please ignore these
sidenotes; they’re just
hints to myself for
preparing the index,
and they’re often flaky!

KNUTH

Internet page http://www-cs—-faculty.stanford.edu/ knuth/taocp.html contains
current information about this book and related books.

See also http://www-cs-faculty.stanford.edu/ knuth/sgb.html for information
about The Stanford GraphBase, including downloadable software for dealing with
the graphs used in many of the examples in Chapter 7.

See also http://www-cs-faculty.stanford.edu/ knuth/mmixware.html for down-
loadable software to simulate the MMIX computer.

See also http://wuw-cs-faculty.stanford.edu/ knuth/programs.html for various
experimental programs that I wrote while writing this material (and some data files).
Copyright © 2020 by Addison—-Wesley

All rights reserved. No part of this publication may be reproduced, stored in a retrieval
system, or transmitted, in any form, or by any means, electronic, mechanical, photo-
copying, recording, or otherwise, without the prior consent of the publisher, except
that the official electronic file may be used to print single copies for personal (not
commercial) use.

Zeroth printing (revision -87), 31 Oct 2020

October 31, 2020

Internet
Stanford GraphBase
MMIX

BARRY
Internet

PREFACE

But that is not my point.
| have no point.

— DAVE BARRY (2002)

THIS BOOKLET contains draft material that I’'m circulating to experts in the
field, in hopes that they can help remove its most egregious errors before too
many other people see it. I am also, however, posting it on the Internet for
courageous and/or random readers who don’t mind the risk of reading a few
pages that have not yet reached a very mature state. Beware: This material
has not yet been proofread as thoroughly as the manuscripts of Volumes 1, 2, 3,
and 4A were at the time of their first printings. And alas, those carefully-checked
volumes were subsequently found to contain thousands of mistakes.

Given this caveat, I hope that my errors this time will not be so numerous
and/or obtrusive that you will be discouraged from reading the material carefully.
I did try to make the text both interesting and authoritative, as far as it goes.
But the field is vast; I cannot hope to have surrounded it enough to corral it
completely. So I beg you to let me know about any deficiencies that you discover.

To put the material in context, this portion of fascicle 9 previews Section
7.2.2.8 of The Art of Computer Programming, entitled “A potpourri of puzzles.”
It discusses how to apply and extend the techniques of previous sections to a
wide variety of classic combinatorial problems that have a recreational flavor.

At present this collection doesn’t yet qualify for the nice, fragrant term
“potpourri”; it’s more of a hodgepodge, mishmash, conglomeration, mélange,
pastiche, etc. I’'m basically gathering items one by one, as I write other sections,
and sticking preliminary writeups into this container. Some day, however, I hope
that I’ll no longer have to apologize for what is now just a bunch of sketches.

The explosion of research in combinatorial algorithms since the 1970s has
meant that I cannot hope to be aware of all the important ideas in this field.
I've tried my best to get the story right, yet I fear that in many respects I'm
woefully ignorant. So I beg expert readers to steer me in appropriate directions.

Please look, for example, at the exercises that I've classed as research
problems (rated with difficulty level 46 or higher), namely exercises 40, 89,
...; I've also implicitly mentioned or posed additional unsolved questions in

October 31, 2020 111

iv PREFACE

the answers to exercises Are those problems still open? Please inform me if
you know of a solution to any of these intriguing questions. And of course if no
solution is known today but you do make progress on any of them in the future,
I hope you’ll let me know.

I urgently need your help also with respect to some exercises that I made
up as I was preparing this material. I certainly don’t like to receive credit for
things that have already been published by others, and most of these results are
quite natural “fruits” that were just waiting to be “plucked.” Therefore please
tell me if you know who deserves to be credited, with respect to the ideas found
in exercises 38, 39, 42, 51, 57, 65, Furthermore I've credited exercises ...
to unpublished work of Have any of those results ever appeared in print, to
your knowledge?

(In particular, I would be surprised if the “tagging algorithm” in answer 39
has not previously been published, although I don’t think I’ve seen it before.)

* * *

Special thanks are due to Regan Murphy Kao for help with Japanese translations,
and to ... for their detailed comments on my early attempts at exposition, as well
as to numerous other correspondents who have contributed crucial corrections.

* * *

I happily offer a “finder’s fee” of $2.56 for each error in this draft when it is first
reported to me, whether that error be typographical, technical, or historical.
The same reward holds for items that I forgot to put in the index. And valuable
suggestions for improvements to the text are worth 32¢ each. (Furthermore, if
you find a better solution to an exercise, I'll actually do my best to give you
immortal glory, by publishing your name in the eventual book:—)
Cross-references to yet-unwritten material sometimes appear as ‘00’; this
impossible value is a placeholder for the actual numbers to be supplied later.

Happy reading!

Stanford, California D. E. K.
99 Umbruary 2016

For all such items, my procedure is the same:
| write them down—and then write them up.

— DON HAUPTMAN (2016)

October 31, 2020

Kao
Knuth
HAUPTMAN

7.2.2.8 A POTPOURRI OF PUZZLES 1

7.2.2.8. A potpourri of puzzles. Blah blah de blah blah blah. We’ll discuss
some of the most interesting time-wasters that have captured the attention of
computer programmers over the years ... The “obvious” ways to solve them can
often be greatly improved by using what we’ve learned in previous sections . ..

* * *

Who knows what I might eventually say here?
I

* * *

Perfect digital invariants. In 1923, the great puzzlist Henry E. Dudeney
observed that

370 = 334+ 73407 and 407 = 4% + 0% + 73,

and asked his readers to find a similar example that doesn’t have a zero in its
decimal representation. A month later he gave the solution, 153 = 13 4+ 53 + 3°
[Strand 65 (1923), 103, 208] — curiously saying nothing about the obvious answer
371 = 3% + 7% 4+ 13. These examples were rediscovered independently by several
other people, and eventually extended to mth powers of the digits for m > 3,
and to radix-b numbers for b # 10. Max Rumney [Recreational Math. Magazine
#12 (December 1962), 6-8] mentioned 8208 = 8* +2* +0* +8*, (491);3 = 794 =
43 4+9% 4+ 13, ..., and named such numbers perfect digital invariants of order m.
Let w2 be the sum of the mth powers of the decimal digits of . With this
notation, the number z is a perfect digital invariant of order m in radix 10 if and
only if 7,z = z. In particular, every order m > 0 has at least two perfect digital
invariants, since the numbers 0 and 1 always qualify. And it turns out that most
orders have more than two (see exercise 34), because of more-or-less random
coincidences. For example, when m = 100 there’s a unique third solution,

x = 265616229619 33010 98036 76416 71003 29792 07874 84348 54147
71766 93876 28693 32047 88451 13744 80147 98509 42958 = 7190, (20)

discovered in 2009 by Joseph Myers.

How can such a humongous number be found in a reasonable time? In the
first place, we can always write & = (Z, ... Z120)10, because exercise 30 shows
that every mth-order solution has at most m + 1 digits. In the second place, we
can see that m,, depends only on the multiset M,,(z) = {@m,...,21,20} of x’s
digits, not on the actual order of those digits. All we have to do, therefore, is
look at each multiset, and see if M, (7 + -+ 27" + 27") = {Tm,..., 21,0}

A multiset of m+1 digits is what Section 7.2.1.3 calls a “multicombination,”
also known as a combination of the ten objects {0,1,...,9} taken m+1 at a time
with repetitions allowed. If we renumber the subscripts by sorting the digits into
order, such a multicombination is nothing more nor less than a solution to

9> @y > - > 21 > 209 > 0. (21)

October 31, 2020

PDI: A perfect digital invariant
Perfect digital invariants-
Dudeney

powers of the digits
radix-b numbers
Rumney

perfect digital invariants
narcissistic numbers
coincidences

Myers

multiset
multicombination
combination

sorting

2 COMBINATORIAL SEARCHING (F9B: 31 Oct 2020 @ 2115) 7.2.2.8

Algorithm 7.2.1.3T, together with the correspondence rule 7.2.1.3—(7), is an
efficient way to generate them all. Notice that the number of multicombinations
is polynomial, only (mgw)’ while the number of (m + 1)-digit numbers is 10™*!.
For example, when m = 3 there are just (193) = 715 cases to try. One of them is
{7,4,0,0}; and 7344340340 = 407 happens to have the same multiset of digits.

With these ideas we could find (20) and prove its uniqueness by considering
“only” (*3°) = 4,643,330,358,810 multicombinations. But that’s still a big num-
ber, and we can do much better. In fact, there’s a nice backtrack algorithm that
solves the case m = 100 with fewer than 100 gigamems of computation.

Here’s how: We generate solutions to (21) by first choosing x,, then z,_1,
then z,,,_o, ..., and we try to rule out bad cases as early as possible. For example,
suppose we've tentatively set 190 = -+ = T92 = 9, and we’ve already considered
all cases with z9; = 9 or 8; so we’ve already found (20). Our next task is to decide
whether z9; < 7 will be viable. Let X; =z +--- + Z this is 7, applied to
the digits already chosen. The final power sum will then be at least ag; + Y91,
which in this case is 9 - 90 ~ .00002 39052 58998 82873 x 10'°!. And it will be
at most bgy ¢« agy +92- 7%, which is ~ .00002 39052 59001 80445 x 10'°!. Wow:
These lower and upper bounds have a nice long common prefix. So we know that
our multicombination not only contains nine 9s and no 8s, it also must include
several known digits that are less than 8, namely {0,0,0,0,2,3,0,5,2,5}.

We can now refine the lower bound to ag; Xg; + 22100 4 3100 4 9. 5100
.00002 39052 58998 82873 x 10'°!. And the upper bound can also be improved,
namely to bg; < ag; +82-71% & .00002 39052 59001 48100 x 10'°!, because rg; +
82 of the digits are still uncertain. Moving on, if we tentatively set z9; = 7 we’ll
find Yoo = g1 +7°°; and agp will be ag; + 7°° &~ .00002 39052 58998 86107 40 x
10'°1, while bgg < bg1 and g < 81. It appears that x99 = 7 is also worth a try.

But after exploring all cases with x99 = 7 we will eventually want to know if
29p < 6 is viable. Then bgg will be agg +81-61°0 & .00002 39052 58998 86107 45 x
10*°! and the common prefix will include the impossible digit 8. (In fact, it will
include three 8s.) So we must backtrack. And if we now test the viability of zg; <
6, we find bg; < ag; +82-61%° ~ .00002 39052 58998 82873 x 10'°!; again there’s a
forbidden 8. We’ve proved that a multicombination for m = 100 that begins with
nine 9s must be followed by 9, 8, or 7; and if x9; = 7, then 299 must also be 7.

*Fleshing out that “perfect” algorithm. The algorithm just sketched will
explore only 624,434,412 multicombinations when m = 100, and its details are
instructive. So let’s look closer. The notation will be more like our normal
conventions if we renumber the subscripts so that (21) becomes

9Z122m2$m+120 (22)

Now we’ll be choosing x; first, then x,, etc., instead of working backward.

The description above was simplified, for expository purposes, but the real
algorithm is essentially the same. At each level of the search, beginning with
level [= 1, we'll try to determine if z; < c¢ is feasible, where ¢ is some threshold;
initially ¢ = ;_1. As above, the search will be guided by (m + 1)-digit integers

October 31, 2020

backtrack algorithm-++

7.2.2.8 A POTPOURRI OF PUZZLES 3

Zl = (Zlm . 210)10, a; = (alm . alo)lo, and b[= (blm . blO)lO, where aj
and b; are bounds on any perfect digital invariant whose largest digits include
{z1,...,2—1}. We also maintain ten counters d; = dg ...dj, where dj;, is the
number of times the digit k appears in {z1,...,z;_1}.

There’s an index ¢ such that @y, . .. ayt41) = bim - . - by(¢41) is @ common pre-
fix of a; and b;; here —1 <t < m. There are ten further counters e; = €9 ... €10
analogous to d, where ey, is the number of times k occurs in {aym, - . -, @y(t41) }-
If £ > ¢ we must always have e;;, < dyx, because all digits greater than ¢ have
already been specified. If k < ¢ we always have dj;, = 0. And if k = ¢ there’s no
restriction on dj, or e;; we write ¢ = q; = e;. ~ dj. = max(0,e;. — d;..).

The number of “unknown” digits is denoted by r = r;, where m +1 —r =
ZZ:O max(d;, eyx) is the number of “known” digits. Finally, we write

9
El = Z max(dlk, elk) - k™ (23)
k=0

for the sum of the mth powers of the known digits. (Notice that this differs from
the quantity called X in our former discussion, where e; wasn’t considered.)
Let’s use a and b as a convenient shorthand for the digits a;; and by that lie
just to the right of the current common prefix, assuming that ¢ > 0. Thus a <b
at all times; and if a = b, the current prefix can be lengthened. If b < ¢, one of
the unknown digits must lie in the interval [a..b], hence we must have r > 0.
In the algorithm below, unsubscripted variables like a, b, ¢, ¢, r, t are re-
garded as being in a computer’s registers. Instructions like ¢; - g or ¢ ¢ ¢; mean
that register ¢ is to be stored into memory or fetched from memory, respectively.

Algorithm P (Perfect digital invariants). Given m > 3, this algorithm gen-
erates all (m + 1)-digit integers x such that 7,z = xz, by finding all of the
appropriate multicombinations 1 ... %41 that satisfy (22). Its state variables
for 1 <1< m+2 are q, ri, t;, and the (m + 1)-digit numbers X, a;, b;, as well
as the digit counts d; and e;. The (m + 1)-digit constants j - k™ should also be
precomputed for 0 < j <m+ 1 and 0 < k < 10.

P1. [Initialize.] Set Il «+ 1, ¢ < 0, r <~ m+1,t < m,a < 0,b + c < 9,
dy < ey <+ X1 + 0, and go to P4.

P2. [Enter level [.] (We've just set z; 1 < c.) Set diy « dj_1); + [k =c] and
e + eq_n for 0 < k < 10. If ¢ > 0, set X} < X1 and ¢ « ¢ — 1;
then go immediately to P5 if ¢ is still positive. Otherwise if r > 0, set
Yy Y14+ and r < r — 1. Otherwise go to P7.

P3. [Done?] If I = m + 2, visit the solution X} and go to P7.

P4. [Test feasibility of c¢.] If there’s an easy way to prove that z; can’t be < ¢,
using the current state variables as discussed in exercise 33, go to P7. (This
test might update all of the state variables except d;.)

P5.[Try c] Set & ¢, 1 < q, ri <7, t; < t,l < 1+ 1, and go to P2.
P6. [Try again.] If ¢ > 0, set ¢ + ¢ — 1, ¢ < e, and go to P4. (Now d;. = 0.)

October 31, 2020

data structures+
monus
registers

4 COMBINATORIAL SEARCHING (F9B: 31 Oct 2020 @ 2115) 7.2.2.8

P7. [Backtrack.] Terminate if [= 1. Otherwise set | + [— 1, ¢ + ¢;, and
repeat this step if ¢ > 0. Otherwise set r < r, t < t;, a < (t > 07 ay: 9),
b« (t>07by:9), ¢+ x, and go back to P6. 1
Exercise 33 deals with the most subtle aspects of this algorithm, but two of

its simpler features are especially worthy of note. First is the fact that we try

decreasing values x;—1, £;—1 — 1, ... for x; until finding an infeasible ¢; then we
can immediately backtrack, because our bounds are valid for all x; < ¢. Second
is the fact that z; is given the forced value ¢ when ¢ > 0. This case arises when
¢ appeared previously in the prefix: Another digit ¢ was supposed to be chosen
eventually, and that moment has finally arrived. That’s why step P7 repeats itself

when encountering ¢q; > 0, and why step P2 goes directly to P5 when ¢;—; > 1.
The running time of Algorithm P is negligible when m < 100, but it appears

to grow roughly as m”® when m increases.

Historical notes: G. H. Hardy, in A Mathematician’s Apology (1950), §15,
dismissed questions like this as “tiresome”; see D. E. Knuth, Selected Papers on
Computer Science (1996), 174-175. L. E. Deimel, Jr., and M. T. Jones described
their adventures with the computation of perfect digital invariants in Journal of
Recreational Mathematics 14 (1981-1982), 87108, 284.

Skeleton multiplication puzzles. Astonishing digital coincidences arise also
in quite a different way. Suppose we multiply two numbers by the classical pen-
and-paper method, then cover up some of the digits. The hidden quantities can
sometimes be reconstructed by knowing only their locations in the remaining
“skeleton.” For example, consider

[
> 000

I g
OO0 L]#7 (30)
OO0o0O
OO0

TTTTTT

The leftmost digit of each number in the skeleton must be nonzero. Exactly seven
7s appear in the calculation, and all of the other digits have been obscured; yet
it’s easy to figure out what they must have been (see exercise 50).

Hidden-digit puzzles have a long history, going back at least to eighteenth-
century Japan, where puzzles by Yoshisuke Matsunaga were published in his
friend Genjun Nakane’s book Kanté Sampé (1738). They were independently
introduced to English-speaking readers by W. P. Workman in The Tutorial
Arithmetic (London: University Tutorial Press, 1902), Chapter VI, problems
31-34. (See exercises 48 and 49.)

Such puzzles have become especially popular in Japan, where they are
called “bug-eaten arithmetic” (mushikuizan), and where a special newsletter
devoted to their creation and refinement was founded in 1976 by M. Maruo

October 31, 2020

Hardy

Knuth

Deimel

Jones

Skeleton
multiplication
Hidden-digit puzzles
Matsunaga
Nakane

Kanto Sampd
Workman
mushikuizan
Maruo

7.2.2.8 A POTPOURRI OF PUZZLES)

and Y. Yamamoto. Many classic skeleton puzzles are based on underlying long
division problems, as in exercise 66; but we shall focus our attention on skeleton
multiplications, similar to (30).

Junya Take introduced a particularly appealing class of bug-eaten multi-
plications in the Journal of Recreational Mathematics 35 (2006), 63, when he
submitted the following puzzle in honor of the editor Steven Kahan:

LOD0000
< OOUd

I o
OOk OxkOOO
OO K k00
(O S [
UOOOOK KO

I 2 I 2 O

There’s a secret digit, K, all of whose appearances are shown; moreover, the K’s
just happen to appear in the shape of the letter K! Each [] can be replaced by
any of the nine digits other than the one reserved for K, except that the most
significant digit of a number cannot be 0. The solution — don’t peek until you’re
ready to see it —is unique:

L] # K. (31)

9175144
X 72461
9175144
5505086 4 K =0 (32)
36700576
18350288
64226008
664840109384

Who would have guessed that 9175144 and 72461 contain such a surprise?

Subsequent issues of that journal contained a series of similar examples, one
for each letter of the alphabet, containing mind-boggling products up to 20 digits
long. How on earth was it possible for Take to discover such pairs of numbers,
whose digits magically and uniquely form specific geometric designs when they
are multiplied?

Rather than trying to solve such puzzles, we will consider the more general
question of how to invent them. As a result, we’ll not only learn how to produce
amazing numerical patterns, we’ll also learn a thing or two about programming
and about mathematics.

For concreteness, let’s look for puzzles like (31) whose solution has K = 0;
other values of K can be investigated in a similar way. We seek decimal numbers

October 31, 2020

Yamamoto

long division

Take

Kahan

alphabet

puzzles, invention of

6 COMBINATORIAL SEARCHING (F9B: 31 Oct 2020 @ 2115) 7.2.2.8

a=(...a2a1a0)10 and b = (bybzbab1bg)10, where a is a multiplicand of unknown
length, whose multiples cC = ab() = (...020100)10, d = aln = (...d2d1d0)10,

e =aby = (...eze1e0)10, f = abz = (... fofifo)i0, g = abs = (...929190)10,
and h = ab = (... hahihg)10 have the property that

ds=d3;=es=e3=fs=g2=91 =hg =hsa =0 (33)
while all other digits a;, b;, ..., h; are nonzero. Notice that c, d, e, f, g are
distinct, because of (33); hence by, by, b2, b3, by are distinct.

Our strategy will be simply to try all possibilities for ag, a1, az, ..., in

turn, working from right to left and backtracking when we get into trouble. For
example, after first setting agp < 1, we find that a; cannot be 1, since we need
to make g; = 0. So we try a; < 2; that forces by to be 5. But then there are no
options for ay; that will make go = 0. We backtrack and try a; < 3; however,
nothing really works well until we try a; <— 5. Then by, b, b2, b3 must be odd, to
make c1diey fi # 0. We also need ay € {2,7} and by € {4, 8}, since g1 = g2 = 0.

The case asaiap = 251 quickly runs out of steam, because we need d3 = e3 =
f3 = 0. That’s possible only when b; = bs = bs; but the b’s must be distinct.

Similarly, aza1ap = 751 goes nowhere: There are three choices for {b;, bs, b3}
only if az < 6; and the multiples of 6751, mod 10000, are

6751, 3502, 0253, 7004, 3755, 0506, 7257, 4008, 0759. (34)
Now the only way to avoid spurious 0s in ¢, d, e, or f is to choose
by € {1,5,7}; b1,b2,b3 € {3,9}, by € {4,8} (35)

But we can’t squeeze three distinct elements into {3,9}, so we must backtrack.

The next plausible settings of agzasaiag are 5112, 6752, 2572, 7572, 5223.
Then we get to a more promising case, asasajay = 5143, which turns out to be
node number 30 in the backtrack tree so far. Its multiples mod 10* are

5143, 0286, 5429, 0572, 5715, 0858, 6001, 1144, 6287; (36)

hence by € {1,3,5,8,9}, b1, b2, b3 € {2,4,6}, and by € {7}. This forced value of
bs tells us that as # 1. Then if we try as < 2, the values of 25143k mod 10° are

25143, 50286, 75429, 00572, 25715, 50858, 76001, 01144, 26287, (37)

and our choices are rapidly shrinking: Only 16 possible settings of b remain,
with by € {1,3,5,9}, b1,bs € {2,6}, bo = 4. Thus we might as well try them
all, in order to see how they affect the overall product, h. It turns out that only
76423 - 25143 makes hy = 0 without also making h; = 0. Hence we can conclude
that asa3za2a1a9 = 25143 implies b4b3b2b1b0 = 76423.

Again our luck fails us, however, because there’s no decent option for as.
The first time we reach a successful setting of as is at node 44, when asay . .. a9 =
175144. And hurrah: The solution (32) is now found immediately, at node 45.

Once we’ve found that solution, we could try to extend it by setting a7, asg,

. in such a way that no new Os will mess up the desired pattern. Indeed, the
number 19175144 does yield a “K of zeros” when multiplied by 72461. But it

October 31, 2020

7.2.2.8 A POTPOURRI OF PUZZLES 7

doesn’t provide a new puzzle, because 19175144 x 72461, 19675144 x 72461, and
14783376 x 83692 all have the same skeleton. (Remarkably, so does 20324856 x
72461, this time with K =9 instead of K = 0!)

We do get a “K of zeros” from x9175144 x 72461 also when x = 3, 4, 5,
7, 8, and 9. But only one of these, 39175144 x 72461, has a unique skeleton;
and it doesn’t make an especially good puzzle, because it involves more digits
than (31). Therefore we are well advised to stop trying to extend a, after a
solution has been found, and to concentrate on the shortest solutions.

When we limit this method to multiplicands a that have at most 9 digits,
we obtain 31 different solutions, while traversing a backtrack tree of 1407 nodes.
(The total computation time, about 1.8 megamems, is negligible.) Then we sort
the solutions by the shapes of their skeletons; and it turns out that 25 of the
solutions cannot be used as puzzles, because their skeletons aren’t unique. Three
of the remaining six do make rather nice puzzles, namely (i) 9175144 x 72461
and K = 0, which is (31); (ii) 9783376 x 83692 and K = 0, whose skeleton is only
one digit larger than (31); and the surprising (iii) 324856 x 72461 and K = 9,
whose skeleton is eight digits shorter than any of the others. Check it out!

Further possibilities arise when we allow zeros in the multiplier, as discussed
in exercise 54. Exercise 56 is devoted to the interesting question of how to design
efficient data structures for this computation.

October 31, 2020

sort
data structures

8 COMBINATORIAL SEARCHING (F9B: 31 Oct 2020 @ 2115) 7.2.2.8

Discrete dissections. It’s often convenient to think of the Euclidean plane

as an infinite grid of unit squares, also called “cells” or “pixels.” A discrete

dissection puzzle consists of two shapes, A and B, each consisting of N pixels.

The problem is to color them with the smallest number of colors, in such a way

that A’s cells of any given color are congruent to B’s cells of that same color.
For example, suppose

A= , B = @, N = 25. (50)

Sam Loyd once asked [in the Sunday color section of the Philadelphia Inquirer,

14 April 1901] for a way to cut A into four pieces that could be reassembled to

make B. He also sought a solution in which none of the pieces had to be rotated.
Loyd’s problem turns out to have six essentially different solutions:

"HFR TR AT
(5
Heodem FB-Hag B-ae

In general, a dissection tends to be particularly nice when its individual pieces
have roughly the same size; so we will attempt to minimize the sum of the squares
of the sizes. By this criterion the scores of the six solutions are respectively
22 432+ 72 +13%2 =231, 22 + 32 + 9% + 112 = 215, 22 + 5% + 72 + 112 = 199,
32452482492 =179, 42 + 5% + 52 + 112 = 187, 42 + 52 + 72 + 92 = 171, so0
we prefer the last one. (The others are interesting too, however.)

If we're allowed to rotate the pieces after cutting, there’s an even better
solution, of score 42 + 62 + 62 + 92 = 169. And the best conceivable score,
52 +52 4+ 62492 = 167, is attainable if we’re also allowed to flip the pieces over:

!(—)5., <—>. (52)

What’s a good way to solve general problems of this kind by computer?
We will assume for convenience that A is always an n X n square, so that
N = n?; the same methods will apply to other shapes, with obvious changes.
Formally speaking, when there are d colors, we seek one-to-one correspondences
¢ between A’s pixels of color & and B’s pixels of color k, for 1 < k < d.

For example, in (50) we can assume that the pixels of A have coordinates
(z,y) for 0 < z,y < n =5, and that those of B are [z,y] for certain 0 < z < 8§,
0 <y < 4. (This particular shape B has no pixels [z,y] with = 4, because it’s
disconnected.) Let 7 be the transposition (x,y)r = (y, z); let p be the rotation
(z,y)p = (y,n—1—x); and let o, stand for shifting by (a, b), so that (z,y)oep =
[z 4+ a,y + b]. Then the transformations in the right-hand solution of (52) are

¢1 =000, ¢2=0_12, ¢3=Tp°01_2, ¢1=03_>, (53)

if 1 is the lightest color and 4 is the darkest. For example, pixel (1,2) of A is
the tail of a ‘P’; it is mapped into (1,2)¢s = (2,3)01,_2 = [3, 1] within B.

)

October 31, 2020

Discrete dissections
pixels

dissection puzzle
Loyd

7.2.2.8 A POTPOURRI OF PUZZLES 9

The key point is that relatively few possibilities exist for each ¢y; hence we
can try them all. Every ¢; has the form ayf), where ay is one of the eight
transformations 7ip’ that take A into itself, and Sy is a shift. We need only
consider shifts o,; that map at least one pixel of A into a pixel of B. For
instance, in problem (50) this occurs for —4 < a < 3 and —4 < b < 3, or for
4 <a<T7and —4 < b < 2, thus 92 cases altogether, making 8 x 92 = 736
possibilities for ¢. We can make a list of all possible shifts, and assign an
arbitrary ordering to the elements of that list. Then we can save a factor of
about d!, by assuming that the shifts we choose satisfy f; < 8y < --- < 4. In
many problems we can also assume that 8 = By41 implies ay < ag41, because
or = ¢r+1 would imply that colors k and k + 1 could be merged. Furthermore
we save another factor of 8, by assuming that «a; is the identity transformation.

In other words, the problem breaks down into lots of subcases, one for each
choice of the mappings (¢1, ..., ¢4), but the number of subcases isn’t disastrous.

So far we haven’t specified that the pixels of a given color must be connected,
although Loyd’s problem referred to “four pieces.” Problem (50) can actually be
solved with only three colors, when connectedness is ignored; for instance thus:

- 'm N

Here ¢1 = 00,1, ¢2 = po2,0, and ¢3 = 1pog3, 1. We will discuss how to find all of
the solutions, connected or not, to a given dissection problem. Unwanted solu-
tions can be discarded later, by imposing extra conditions such as connectedness.

A closer look at this three-coloring problem reveals that we don’t really have
to try all (%) = 134,044 of the ways to choose 8 < B2 < B3, because most of
them fail to cover all the pixels of B. Only 4250 sequences of shifts —about 3%
of the total — pass this test, which is independent of the a’s.

Consider now a typical sequence of shifts that does cover B: 1 = 09,0,
B2 = 03,0, B3 = 02,_1. Some cells of B are covered thrice: For example, [3,2] =
(3,2)81 = (0,2)82 = (1,3)P3. Others are covered twice: For example, [6,1] isn’t
covered by (1, but it equals (3,1)32 and (4, 2)8s. Still others, like [0,0] and [7, 1],
are covered only once.

When 31, 32, and B3 do cover B, we must consider 8 = 64 possibilities
for as and az. Most of these typically fail to cover A; that is, at least one
pixel of A is not the inverse image [z,y]¢; of any [z,y] € B. For example, when
(B1, B2, B3) = (00,0,03,0,02,-1), it turns out that only four settings of (aq, as, as)
pass this test, namely (1, p,1), (1,p%,7), (1,7p,7), and (1, 7p?,1). In fact, among
all 4250 x 64 = 272,000 candidates for (a1 31, @282, asB3), all but 582 choices are
ruled out, at this stage of the search for valid dissections.

Let’s take a closeup look at one of those successful cases:

$1 =000 =1, 2 = TPp0O30, ¢3 = TO2,_1. (55)

We're left with a bipartite matching problem on 2N vertices, with the pixels of A
to be matched to the pixels of B. The “edges” of this matching problem are
specified by the mappings ¢r. Table 1 summarizes this problem by showing the

October 31, 2020

connected
Loyd
bipartite matching

10 COMBINATORIAL SEARCHING (F9B: 31 Oct 2020 @ 2115) 7.2.2.8

Table 1
THE MATCHING PROBLEM THAT UNDERLIES DISSECTION OF (50) VIA (55)
30 60 5061 6062 70
0331 13 50(23 5151|3361 52 71 03 13 23 40|33 01 41
02 32 12 2252 3262 72 02 12 22 30(3202 31 2233 3234 42
0133 11 30|21 31|31 32 33 01 11 21 20|31 0321 2323 3324 43
00 10 20|20 21|30 22 23 00 10 20 10(3004 11 2413 3414 44

possible mates (z,y)dy of A’s pixels (x,y) at the left, also showing the possible
mates [z,y]¢, of B’s pixels [z,y] at the right. For example, pixel (2,4) of A,
which is in the center of the top row, has the entry ‘[s061]’; it means that ¢,
does not map (2,4) into a pixel of B, but ¢, takes (2,4) — [5,0] and ¢3 takes
(2,4) ~ [6,1]. Similarly, the entry ‘[23 40]” means that the only ways to reach
pixel [2,3] of B are via ¢; and ¢5 , which take [2,3] — (2,3) and [2,3] — (4,0).
That’s good news, because bipartite matching problems are relatively easy to
solve. Moreover, the problems that arise from dissection scenarios are especially
easy, because each vertex has at most d neighbors. Indeed, the problem in
Table 1 is almost immediately solvable by hand, because nearly all of the moves
are forced: Looking only at cases where there’s one choice from A, we must match
(0,0) ¢ [0,0], (0,4) & [3,0], (1,2) & [1,2], (1,4) & [6,0]
(4,0 & 2.3, (4,1 &[3,3), (4,2) & (7.2, 4.3) &[7.1], (4,4) & [7,0)

and in cases where there’s just one choice to B, also

(0,1) [0, 1], (0,2) & [0,2], (0,3) ¢+ [0,3],

(1,0) ¢ [1,0), (L,1) & [1,1], (1,3) & [1.3]
and then, working back and forth with the remaining possibilities, also

(3,00 & 1[2,2], (3,4)&1[6,2), (3,2) 4 [3,2], 3,1) & [3,1], (2,1) & [2,1],
(2,0) < [2,0], (2,4) S [5,0], (3,3) & [6,1], (2,2) & [5,2].
Now the entire matching is determined, except for two final choices
(2,3) & [5,1] or (2,3) S [5,1];

we have discovered two more three-color dissections, namely

MA-m M-m

The 582 successful choices for (aq,51), (az,f2), (a3, B3) don’t always yield
solvable matching problems. In fact, all but 14 of them quickly turn out to be
self-contradictory, when forced moves are propagated. And 9 of those 14 reduce
to a trivial problem, in which all moves are forced. Thus only five cases require
the use of a rudimentary bipartite matching algorithm, such as dancing links;
one of those five has five unforced vertices and leads to 16 dissections. Altogether

October 31, 2020

dancing links

7.2.2.8 A POTPOURRI OF PUZZLES 11

39 three-color dissections of (50) are found, some of which are equivalent to each
other because of local symmetries.

Considerably more work is involved when we ask for all four-color dissections
of (50), but the computations still need only a few gigamems. In this case 230,497
of the (945) = 3,183,545 shift sequences 81 < f2 < B3 < 4 cover B, and 4,608,039
subsequent transformations (a1, ..., a4(s) successfully cover A. Noncontra-
dictory matching problems arise after 416,872 of those cases; all but 116,725 of
those problems are trivial. The nontrivial ones submit to dancing links, giving a
grand total of 1,042,383 dissections — of which 51,472 are rookwise connected as
in (52). (If “flips” are disallowed, so that each ay, is simply a rotation p?, the num-
ber of dissections goes down to 106,641, of which 6874 are rookwise connected.)

We know from Section 7.1.3 that kingwise connectivity is an interesting and
important alternative to rookwise connectivity. Discrete dissection problems
that ask for kingwise connectivity are largely unexplored and potentially quite
interesting. For example, there’s a beautiful dissection of the 8 x 8 square into
the 9 x 9 “Sierpinski carpet” [W. Sierpinski, Comptes Rendus Acad. Sci. 162
(Paris, 1916), 629—-632], using just four kingwise connected pieces(!):

> . (57)

Exercise 83 discusses data structures for the algorithm just sketched. Heuris-
tic methods that work successfully on several problems that are too large for
these exact methods have been introduced by Y. Zhou and R. Wang, Proc.
of Bridges 2012: Mathematics, Music, Art, Architecture, Culture (July 2012),
49-56. Greg N. Frederickson’s book Dissections: Plane & Fancy (1997) is a
standard reference for all kinds of dissection puzzles, discrete or otherwise.

* * *

(Please stay tuned for further adventures in puzzledom.)
I

October 31, 2020

flips

kingwise connectivity
Sierpinski carpet
Sierpinski

data structures

Zhou

Wang

Frederickson

12 COMBINATORIAL SEARCHING (F9B: 31 Oct 2020 @ 2115) 7.2.2.8

EXERCISES
30. [M21] Ifb>2andx = (xn ... z120)p > b™ T, prove that o7 +- - -+ 2T+ < .
31. [10] What’s the difference between M3 (z) and My(x), as defined in the text?
32. [22] Algorithm P requires frequent examination of the individual decimal digits
of multiprecision numbers. What’s a good way to do that on a binary computer?
33. [M28] Complete the description of Algorithm P by specifying step P4.
a) First show how to obtain a refined lower bound a; and a refined upper bound b;
based on the current values of a, b, and X;, without changing ¢.
b) Then explain how to decrease t, when a = b and ¢ > 0.
34. [24] Implement Algorithm P. For which m < 100 are all solutions trivial?
35. [20] For which m are there nontrivial perfect digital invariants with no 9s?
37. [M27] Find an efficient way to compute the largest integer « such that mpz > .
38. [M22] A “perfect number” is equal to the sum of its divisors, excluding itself; for
example, 6 = 1+4+2+3 and 28 = 14+2+4+4+47+14. “Amicable numbers” are equal to the
sums of each other’s divisors in a similar way; for example, 220 =1+ 2 +4 + 71 4 142
and 284 =142 44+ 5410+ 11 + 20 + 22 4 44 + 55 + 110.
This classic definition, going back to followers of Pythagoras in ancient Greece,
suggests that “perfect digital invariants” are akin to “amicable digital pairs” such as

136 = 2% + 43 + 4° and 244 =1+ 3% + 6%

a) What’s another amicable digital pair of order 37

b) Devise a good way to find all such pairs of order m when m isn’t extremely large.
39. [M25] If £ = zo > 0, repeated application of the mapping ;41 < mmx; will even-
tually reach a cycle of period length A > 0, where z; 1 = z; for all j > u. (See exercise
37 and exercise 3.1-6.) What’s a good way to discover all such periods, given m > 2?7
40. [HM46] Are there infinitely many m for which z = m,, x has (a) 2 (b) >2 solutions?
41. [M25] Prove that the number of radix-b numbers with 2 = (v, ...x170), = 22 +
coo 42} + 23 is s(b® + 1) when b is even and 2s(b” 4+ 1) when b > 1 is odd, where
s(r) =[2"] (1 +2z+42*+---)? is the number of ways to write r as a sum of two squares.
42. [M23] Explain how to find solutions to (dids...dm)10 = B +dEZ+--+d%in a
reasonable amount of time, if m is reasonably small. (Here 0 < d; < 10 for 1 < j < m;
the leading digit d; is allowed to be zero.) For example, the solutions when m = 7 are
0000000, 0000001, 0063760, 0063761, 0542186, and (amazingly) 2646798. You should
be able to find all solutions for m = 16 in less than a minute.

48. [M17] (Y. Matsunaga, 1738.) Once upon a time, a certain amount was paid to
each of 37 people. Unfortunately, most of the records of that transaction were eaten
away by moths; existing accounts show only that the individual amounts were [___]23,
and that [__]23[][] was paid altogether. Can the original amounts be reconstructed?

49. [M19] (W. P. Workman and R. H. Chope, 1902.) Find the missing digits:

300
X 6[]

2 400
Odsd

O0O200

October 31, 2020

multiprecision numbers
digit extraction
extraction of digits
perfect digital invariants
perfect number
Amicable numbers
Pythagoras

amicable digital pairs
Digital pairs, amicable
mapping

cycle

radix-b numbers

sum of two squares
narcissistic numbers
Matsunaga

Workman

Chope

7.2.2.8 A POTPOURRI OF PUZZLES 13

50. [M19] Solve the skeleton multiplication puzzle (30) quickly by hand.

51. [M21] The solution to exercise 50 begins with the fact that the product in (30)
is completely known. Devise a similar puzzle in which all seven 7s appear only within
the partial products—not in the multiplicand, or in the multiplier, or in the product.

52. [M22] Extend exercise 51 to a complete set of nine puzzles, having respectively
one 1, two 2s, ..., eight 8s, and nine 9s.

54. [21] Consider the following variants of puzzle (31), where [] # K:

I I
x OJOO0Od x JO0O0O0
I o I
KOxOOO KOk OOOMd
OO0k xOO- Ok x OO
OOOoOxkOOd Ok OO0
OOOOOK K OO0k KOO
| 2 2 | | OOOKOkKOOOOO

On the left, one of the multiplier digits is implicitly forced to be zero.

On the right, the Ks are positioned in such a way that at least two [|s appear at
the right of each line. The right-hand puzzle is therefore said to have “slack 2,” while
the left-hand one has “slack 0” and (31) has “slack 1.”

These puzzles were discovered by an algorithm like that of the text, having specified
“offsets” O = (09, 01,...,0m) and “patterns” P = (po,p1,...,Pm). In the left example,
0 =(0,1,2,4,5,0) and P = (0,101000, 11000, 100, 11, 1010000); in the right example,
0 =(0,1,2,3,4,0) and P = (0,1010000, 110000, 10000, 1100, 10100000).

a) Explain how to run through all offsets O, for multipliers that have m nonzero
digits and at most z zero digits.
b) Given offsets O, a pixel pattern such as

the patterns P.

55. [M21] Show that the K shape in (31) and exercise 54 can be embedded in a
skeleton puzzle that has a 5-digit multiplicand and a 4-digit multiplier (and slack 0).

eoe
90
@000
090
e0e

, and a slack s, explain how to compute

56. [30] Choose appropriate data structures for an algorithm that looks for skeleton
multiplications as in the text, given offsets O and patterns P as in exercise 54. Also
sketch the details of that algorithm.

57. [24] Design a series of ten puzzles, one for each digit d from 0 to 9, in which all
occurrences of d appear in the shape of a d. Exactly five digits of each multiplier should
be nonzero; an example appears in Fig. 300. Use the following pixel patterns for the
shapes:

000 O8O @80 080 608 000 080 000 080 O8O0
000 960 OO0 OO0 608 600 600 COe 008 e0e
000 O8O 080 080 988 000 880 C08 080 O8e
000 O8O €00 000 OO 000 60e 080 008 00
000 000 900 000 CO® 9000 O8O OO0 O8O €80

58. [24] Design a series of twenty-six puzzles, one for each letter of the alphabet, in
which all occurrences of some digit appear in the shape of a particular letter. Your
puzzles should be “optimum” in the sense that (i) exactly four digits of each multiplier
should be nonzero; (ii) the total number of digits should be as small as possible. An

October 31, 2020

skeleton multiplication
slack

pixel pattern

data structures

pixel patterns
alphabet

14 COMBINATORIAL SEARCHING (F9B: 31 Oct 2020 @ 2115) 7.2.2.8

OOo000g
O Oooooooo
OOO000g x 0Ooao0
5 5 5 00000 0 O00O000
I 0 I OAdAOOO™
OO0 s s 000 O0A0A0DO
OO000d s O OOO00A A A
0000 s s 0000000 OO00A000 A D000
(C1#5) (% A)

Fig. 300. Prototypes for two series of puzzles (see exercises 57 and 58).

example appears in Fig. 300; however, the puzzle shown there is not optimum, because
a smaller skeleton is possible using slack 1! Use the following pixel patterns:
00800 0000 O8O0 0000 6000 0000 0080 6000 000 000 .80. 0000 80008
©O000 0000 O8O 0000 0080 6000 0880 6000 000 O8O0 6008 0088 6000
00008 0000 00800 08800 0000 O000 00000 6008 60008 60800 00008 60000 0000e
00000 6000 6008 60080 0000 6000 00000 6008 60000 6000 08080 08000 COOeO

.OOO. [e, o] O% Oee0e 0008 0880 O0800 O8O 00800 Oe eo .OOO. 00800 eeeee
(Note that this K is wider than the Ks in (31) and exercise 54.)
59. [2/] Use the pixel patterns of exercise 58 to design two more series of alphabetic
puzzles, this time with multipliers that have exactly five nonzero digits. The first series
should be like (31), with no special digits in the first partial product. The second series
should have no special digits in the total product. Examples ([[]# A):

(0 [I [I o
x JOO0OOC0O0 x OOO00O000
I o [ADOOO0OO0OO
AOOOOOO ADADOOCOOO
AOAOO0OO O0AO0AOOO0O
O0AOAdO OOddAa A A
O0O0O0A A AL OOO0OoAOOOA

OO0AOOOAOOOOOd I

64. [M2/] (F.Schuh, 1943.) Prove that the skeleton multiplication in Fig. 301(a) has
exactly one solution in which each of the digits {0,1,...,9} occurs exactly twice.
65. [M22] What’s the unique way to insert digits 1, 2, 3, 4, or 5 into Fig. 301(b)?
66. [M20] In 1939, Richard Feynman (age 21) was intrigued by the long-division
skeleton problem of Fig. 301(c), in which all occurrences of a secret digit ‘@’ have been
specified ([]# Q).

a) What skeleton multiplication corresponds to this division?

b) Does that skeleton multiplication have a unique solution?
68. [M26] Show that any eract cover problem can be converted in a natural way to a
skeleton multiplication problem that has the same number of solutions. Demonstrate
your construction by applying it to example 7.2.2.1—(5).

October 31, 2020

Schuh

Feynman

division skeleton problem
exact cover problem

7.2.2.8 A POTPOURRI OF PUZZLES 15

(DE {172737475}) DD@D Loyd
Ooood data structures
.bopgn DeP/H000600 e e

m'n Tonoon HOue

X—DDD DDDDD DD Q Zlirs)(l‘,l:r:)rfgcted solutions
(| N T —

OO I | | 0o

(I I I e
N I Qood
. ®) © HIHd

Fig. 301. Special skeleton puzzles, discussed in exercises 64—66.

80. [M20] Why does the text say that the “best conceivable score” for a solution to

Loyd’s problem (50) is 5% + 5% + 6% + 927

81. [M20] What are the four transformations ¢y in the lefi-hand dissection of (52)7
» 83. [28] Design good data structures for the text’s discrete dissection algorithm.

85. [21] The dissection in (54) has the smallest score, 7> 4+ 7% + 11?, among all 3-
colorings of (50). What is the largest attainable score?

l
o

86. [22] Extending (51), find all of the discrete four-piece rookwise connected dissec-
tions of a 13 x 13 square into 12 x 12 and 5 x 5 squares, with no pieces rotated or flipped.

» 87. [28] Continuing exercise 86, find all of the discrete four-piece unrotated dissec-
tions — connected or not—of (a) 5% into 4% + 3%; (b) 13 into 12* + 5%; (c) 177 into
152 4 82. (Don’t allow pieces to jump between squares as they do in (54) and (56).)
88. [M30] (G. N. Frederickson.) Prove that there’s a discrete four-piece rookwise
connected dissection of a w X w square into squares of sizes u X u and v X v whenever
(@) u=2p>+2p,v=2p+1,w=2p"+2p+1; (b) u=4p> — 1, v =4p, w = 4p® + 1.
89. [M/6] Aresuch dissections possible for all (u, v, w) with u>+v* = w?? (The small-
est unsolved cases occur for (u, v, w) = (20, 21, 29); (28, 45, 53); (33, 56,65); (48,55, 73).)

» 91. [24] Each of the 36 characters in ‘EF'ONT' 36’ (see Fig. 302) can be obtained by
dissecting a 6 x 6 square into at most four pieces. Find “best possible” dissections,
giving preference to well-connected pieces of near-equal size.

» 92. [29] Design a 26-character font in which each letter from A to Z is obtainable by
dissecting a 6 x 6 square into at most three pieces, each of which is rookwise connected.
Note: Your letters won’t be as consistent with each other as they are in FONT 36.
But strive to make them at least recognizable. Here are suggestions for A, B, and C:

93. [29] And can a decent alphabet be made with two-piece dissections?

95. [40] Experiment with algorithms for dissection that rule out disconnected solu-
tions early in the process, instead of first generating the complete set of dissections.

October 31, 2020

16 COMBINATORIAL SEARCHING (F9B: 31 Oct 2020 @ 2115) 7.2.2.8

Qoeeee00 000880
XX 0000 Sierpinski carpet
OO [e]e]e]e]

00
500

900000

o
o

il

90000088 QOO
0000808080 OO0®

O QOO
9000 OCOOOeee0000

Fig. 302. ‘FONT'36’, a special font designed for dissection puzzles.

96. [40] Can the 8 x 8 square be dissected into the 9 x 9 Sierpinski carpet using at
most six rookwise connected pieces?

999. [M00] this is a temporary exercise (for dummies)

October 31, 2020

7.2.2.8 ANSWERS TO EXERCISES 17

SECTION 7.2.2.8

30. Let tm = (m+2)(b — 1)™/b™ 1. Then tpi1/tm = (m +3)(b — 1)/((m + 2)b); so
to < - - <tp_3=tp_2 >tp_1 >---, and the maximum is t,_» = (1 — l/b)b_2 < 1.
Similarly, if n > m+1 we have b"/(n+1) > b™Y/(m +2). Hence 27" +-- -+ 27" <
m+1D)OG-1)" <" ™ Hm+2)b-1)" <b" < .
31. M3(0) = {0,0,0,0}, M4(0) = {0,0,0,0,0}; M, (z) is defined only for = < 10™**.
32. Algorithm P needs multiprecise arithmetic only for addition. Therefore X, a;, by,
and the basic constants j-k™ can be represented conveniently as binary-coded decimal
integers, with 15 digits per octabyte. For example, the number z in (20) would appear
in memory as seven octabytes #2656162, #296193301098036, ..., #801479850942958.
Binary-coded addition is easy with bitwise operations as in exercise 7.1.3-100.

33. (a) If t < 0, go to P7. Otherwise if b > ¢, set a; <+ X; and b; + X +r-c™.
Otherwise if r = 0 go to P7. Otherwise set a; + X;+a™ and b; « X;+b™ +(r—1)-c™.
Then set a < a;; and b < b;;. Repeat until a; and b; don’t change further.

(b) This is the most delicate part, because we may have learned a new digit. Do
the following steps, while a = b and ¢ > 0; then go back to (a): (i) If b < ¢, go to (v).
(ii) If ey < di, go to (vii). (iii) If b > ¢, go to P7 (we’ve already saturated digit b).
(iv) Set g < e + 1 — djp (which is positive). (v) Set r < r — 1, and go to P7 if
r < 0. (vi) Set X; « X; +b™ (because b is a newly known digit less than c). (vii) Set
ep—ep+landt«t—1. Ift >0, also set a + a;; and b < by;.

[Tomas Oliveira e Silva has observed that better bounds are possible. For ex-
ample, in the text’s discussion we could raise the lower bound ag; to the exact value
.00002 39052 58999 x 10'°! | because 8s are forbidden; and a similar idea applies to upper
bounds. Further exploration of such techniques should prove to be interesting.]

34. Only m = 2, 12, 15, 18, 22, 26, 28, 30, 40, 41, 48, 50, 52, 58, 80, 82, 88, 98.

35. 3,4,5,6,7,8,9, 13,17, 25, 27, 29, 47, and no other m < 1000. (Just change 9 to
8 in step P1.) Incidentally, there’s a solution for m = 73 with only one 9!

37. Let @ = amam—1...a¢ be a string of decimal digits, of length m + 1 — ¢, where
at > 0; and let @« — 1 be the same string but with a; decreased by 1. Let z, be the
decimal number obtained by appending ¢ zeros to the right of o, and let yo be z, — 1.
Hence y, is the decimal number obtained by appending ¢ 9s to the right of @ — 1.

The following “bootstrap algorithm” works with strings « such that x > z, implies
Tme < z; this condition holds initially with the one-digit string o = [(m +1)9™/10™].
Given such an a we form zo = Tm¥Ya = (ZmZm—1--.20)10, and find the largest r such
that zm ... 2r41 = Ym .- - Yr41. f r < 0 or 2z, < y,, the answer is yo. Otherwise, if
r<t wesett < rand o<+ zn...z +1. Otherwise we set t < ¢t + 1 and increase ¢t
further if necessary until a; > 0.

When m < 150, this algorithm finds the solution in fewer than 14 iterations and
fewer than 115 Ku. The answers y, for 1 < m < 5 are 09, 099, 1999, 19999, 229999;
they can be represented more succinctly by their prefixes @ — 1, namely 0, 0, 1, 1,
and 22. The analogous prefix for m = 100 is 000251. [See B. M. Stewart, Canadian J.
Math. 12 (1960), 374-389.]

38. (a) 919 = 1% + 4% + 5% + 9%, 1459 = 9% + 1® + 93, [K. Iséki also exhibited two
3-cycles, in Proc. Japan Academy 36 (1960), 578-587.]

(b) For each multicombination 9 > d, > -+ > do > 0, form z < dj + --- +di°
and y < mnz. If < y, also form z < m,y; and if x = z, report the pair (z, z).

If m > 33 we can assume do = 0, because (m+1)9™ < 10™. Alsod; = 0if m > 61.

October 31, 2020

binary-coded decimal
bitwise operations
Oliveira

bootstrap algorithm
Stewart

Iséki
multicombination

18 ANSWERS TO EXERCISES 7.2.2.8

When m = 3 this method actually reports (919, 1459) twice, from dzd2dido = 8740
and 9541, because of the “birthday paradox” coincidence 0% + 7% +8% = 13 4 5% 4 93(!).
The number of (distinct) amicable pairs form = 2,3, ...,33is (0, 2, 1,2, 1, 2, 0, 2,
1,1,0,0,0,0,0,1,1,0,1,0,0,0,2,2,1,1,0,3,0,0, 1, 4); the largest pair for m = 33 is

(9526805 32993 29396 93391 76210 89100, 248 50076 01437 39486 22580 87152 05099).

No streamlined method analogous to Algorithm P appears to be possible.

39. Solution I: As in answer 38(b), we generate all multicombinations d, . ..do; but
this time we store them in memory, as binary-coded hexadecimal numbers (dy, . . . do)16.
Let them be Dy = 00...0, D; =10...0, ..., Dp—1 =99...9, where p = (m-gm). Notice
that the method of Algorithm 7.2.1.3T yields these numbers in increasing order; hence
it’s easy to do a binary search in this array.

Let g(j) be the function such that Dgy(;) equals the result of bucket-sorting the
digits of m, D;j. For example, when m = 3 we have D314 = 7755 and P +724+534+5% =
936 and Ds57 = 9630, so g(314) = 557.

There’s a simple “tagging algorithm” that finds all cycles of any mapping g from
[0..p) into itself: We explore from an untagged vertex j, tagging every vertex that we
see until first encountering a tagged vertex k. Then we double-tag all vertices from j
to k; and if k wasn'’t already double-tagged, it begins a new cycle (which we proceed to
double-tag before moving to another j). Formally, assume that we're given an array of
two-bit quantities T; for 0 < j < p, initially zero, and do the following steps for j = 0,
1,...,p—1: If T; > 0 do nothing. Otherwise, set k < j; while T = 0, set k + g(k)
and Ty, < 1. Then set 7 < j; while ¢ # k, set 7 <— g(i) and T; <— 2. Then if Ty, < 2,
we’ve found a new cycle, beginning at (say) k; set ¢ < g(¢), [< 0, and while T;(;) < 2
set ¢ < g(i), [< 1+ 1, T; < 2. The cycle length is [.

Solution 2: We need not store the multicombinations in memory, nor do binary
search, because Theorem 7.2.1.3L tells us exactly where to find any multicombination.

More precisely, we set p < 0 and perform Algorithm 7.2.1.2T with s = 9, ¢ = m+1,
and n = m + 10. When visiting ¢;...c1 in step T2, we compute (¢ +¢ —1)™ +--- +
(c2+1)™+c* = (em - - -€1€0)10, S€6 g(p) = (e”'tt_l) +- 4 (62;—1) + (ef), and p <+ p+1.

Historical notes: A. Porges found the cycles for m = 2 by hand [AMM 52 (1945),
379-382]. K. Iséki found them for m = 3 in 1960, also by hand (see answer 38(a)).
Then computers came into the picture, at first with cumbersome methods because of
limited memory. In unpublished work communicated to Martin Gardner, R. L. Patton,
Sr., R. L. Patton, Jr., and J. S. Madachy reached m = 17 by 1975.

40. Empirical results for m < 180 give strong support for (b) and mild support for (a).
Both conjectures may well be true, although they are well beyond any known proof
techniques. [See B. L. Schwartz, J. Recreational Mathematics 3 (1970), 88-92.]

41. The conditions are equivalent to 2; = 0 for j > 1 and b*>+1 = (b—2x1)*+(220—1)%.

Suppose b + 1 = u? + v?; the corresponding solutions are z1 = (b + u)/2 and
zo = (1 £ v)/2. Hence v must be odd, and these four cases lead to exactly two in
the range 0 < z1,2z0 < b. [N. J. Fine, AMM 71 (1964), 1042-1043, noted also that
s(b> + 1) = 2 if and only if b? + 1 is prime; otherwise there are solutions with z1 > 0.]
42. Let pyqg =d-10™"" —d". Set [+ [m/2] and form the multisets of 10" values A =
{p1.a,+ - -+pi4,;} and 10™ " values B = {—pi41,4,,, — * *—Pm.d,, }- Then the solutions
correspond to the elements of the multiset intersection A M B. (See exercise 4.6.3-19.)

We can gain some efficiency by omitting negative elements of B, and by omitting
from A all elements that exceed the largest element of B. For example, when m = 16

October 31, 2020

birthday paradox
coincidence
binary-coded
binary search
bucket-sorting
tagging algorithm
double-tagged
Porges

Iséki

Gardner

Patton, Sr.
Patton, Jr.
Madachy
Schwartz

Fine

multiset intersection

7.2.2.8 ANSWERS TO EXERCISES 19

the reduced multiset B still has 99,795,483 elements, but A reduces to only 20,846,476.
After sorting those multisets, the intersection is quickly found.

The number of solutions for m = (2,3,...,16) is (3, 8, 5, 2, 4, 6, 2, 2, 3, 2, 2, 3,
3, 2, 3), respectively; 0033853790788237 is the surprising solution for m = 16.

[Such numbers were introduced by D. Kozniak in Recreational Mathematics Mag-
azine #10 (August 1962), 42; he and J. A. H. Hunter found all solutions for m = 2 and
m = 3. J. S. Madachy found the first five solutions for m = 7 in 1970; see Fibonacci
Quarterly 10 (1972), 295-298.]

48. The smallest solution to [123 x 37 =[___123[][] is 9523 x 37 = 352351. For
each 10000 added to the individual amounts, add 370000 to the total.

49. 347 x 67. (Ounly ten cases 314, 330, ... work for the product by 6.)

50. The only 3-digit divisors of 777777 = 3-7%-11-13-37 that contain no 7s and don’t
end in 1 are (143, 259, 429, 539). Their cofactors are (5439, 3003, 1813, 1443). And
only 539 x 1443 gives just seven 7s without introducing a leading zero.

51. A simple backtrack shows that the shortest such puzzles with a unique solution are

(| (| (| ([
x Q04O x Q04O x Q04O x OO
700 OO0 70 777 7770 O £7
777 777 O7dd O d '
7707 7707 7770 O7 00

I I | |

But they’re even easier than (30), because 77+7 and 777+ can be a multiple of a one-digit

7-free number only if that divisor is 9. Hence * = 6, and this gives the answers away.
So the best short puzzles of this kind — each findable with a small backtrack tree,

given the number of digits in multiplicand and multiplier —are just a bit longer:

(always [] # 7) ([[
Qo0od Qoaad x JO0Od
I x Q04O x OO 7700
o xdg 007 70 Or0-r0 Or0O7
77770 OO7 70 OrOr7 7 O70
O7d0r7 70 Or7r740+7 O7r07d 770

I A |

52. The author’s favorites, among many possibilities, are shown in Fig. A-30. [Such
puzzles were pioneered by Yukio Yamamoto in 1975. See S. Okoma, J. Take, and
M. Maruo’s excellent book Mushikuizan pazuru 700-sen (Kyoritsu, 1985), 42, 200.]

54. (a) To run through all sequences with 0 = 0p < 01 < -+ < 0m—1 < m + z and
om = 0, use (say) Algorithm 7.2.1.3T withs =2, t=m—1, 0j =¢; +1.

(b) There’s a “raw” pixel pattern, independent of offsets, which can be represented
as R = (ro,71,...,7m); the example pattern has R = (000,101, 110,100,110, 101).
Suppose r; ends with ¢; zeros. Then p; = (r; <t)>0;, where t = s+maxo<j<m (0; —t;).

October 31, 2020

sorting
Kozniak
Hunter
Madachy
backtrack tree
author
Yamamoto
Okoma

Take

Maruo

20 ANSWERS TO EXERCISES 7.2.2.8

OO OO OO
x OO0 x OO0 x OO0 O0oO
000 000 O30 <o
OO OO0 2 OO s 4 40]
O1 02 50 OO 4 4
o000 Oo0O Oo0O Ooo0OO
041 O #2 [#3 O # 4
OOooO
OOO OO Oo0OO x OO0O0O
000 =000 x OO0 Totorl
0500 6 6] OsOsO 909 9
555|:| |:|66 SDSDS 9|:|99
0050 e 6 sOsOs OO 9 OO
o O O
[#5 [#6 [#38 O+#9

Fig. A—30. Skeleton multiplication puzzles with d ds.

(By the way, the answers to the given puzzles are 237457 x 720845 and K = 9;
467224 x 6521 and K = 3. Another nice puzzle with slack 0 is answered by 38522 x
3597001 and K = 6. There are none with slack 0 and z = 0.)

55. Take the skeleton of 38522 x 3597, with K = 6.

56. Instead of using the computer’s built-in multiplication, it’s best to implement
decimal arithmetic from scratch. Say that a bignum is a nonnegative integer x that’s
represented as a sequence of bytes zoz1...zn—1, with (say) N = 25; the value of z is
(z¢...71)10, where t = wo, and z; # 0 unless t = 0. It’s easy to write a routine that
computes z + 10%y, given bignums z and y and an offset ¢, and to prepare the basic
multiplication table of bignum constants a - b for 0 < a,b < 10.

We maintain an array JA[I1[j]1 of bignums, representing j - (a;...ao)10 at level [
of the algorithm, for 0 < j < 10. Clearly JA[I1[j1 = JAL — 11051 + 10'(j - a;) when
I > 0. (See (36) and (37); but we don’t truncate to [digits as shown there.) These
values need to be computed only when j is a potentially useful multiplier digit. So we
have another array STAMP[I]1[j] by which we can tell if JA[I1[] is valid (see below).

Next there’s CHOICE[k], for 0 < k < m, which is a permutation of {0,1,...,9};
also WHERE [k], which is the inverse permutation. (Thus CHOICE[k] [i] = j if and only
if WHERE [k] [j]1 = i.) The multiplier digits that haven’t been ruled out by constraint pj
at level [are the first S[I] [k] elements of CHOICE[k], namely the elements j such that
WHERE [£] [j] < S[I]1[k]. This setup permits easy deletion from lists while backtracking,
because pj becomes stronger as [increases; see 7.2.2—(23).

Finally we prepare an array ID such that py = p;s if and only if ID[k] = ID[K'].
A STACK is used to propagate forced constraints. And the variable NODES, initially 0,
holds ten times the serial number of the current node.

October 31, 2020

decimal arithmetic
bignum

stamping-+

inverse permutation
deletion from lists

7.2.2.8 ANSWERS TO EXERCISES 21

The algorithm has an outer loop for 0 < d < 10, where d is the special digit of the
pattern (called ‘K’ in (31)). We allow d = 0 only if 0,,—1 = m — 1. A backtrack scheme
like Algorithm 7.2.2B is followed for each d, but starting at level [= 0.

To initialize in step B1, first set i +— 0 and do the following for 1 < j < 10: If j # d,
set CHOICE[k][i] < j and WHERE[k] [j] < i for 0 < k < m, then set ¢ <— i+ 1. Then
S[01[k] < 4, CHOICE[K] [¢] < d, WHERE[K] [d] < ¢, WHERE[K][0] < 9, for 0 < k < m.

At the beginning of step B2, set NODES «— NODES+10. If S[I1[k] =1for0 <k <m
and if all constraints po, ..., pm are totally satisfied under the assumption that a; =0
for all 5 > [, output the current solution and go to B5. (The current solution is
represented by the multiplicand a and multiplier b. To sort for unique skeletons, we
also want the length of a and the lengths of JA[l — 11 [CHOICE[k][01] for 0 < k < m.)

Step B3, which tests if a; < z is viable, is the heart of the algorithm. Reject z if
x = d. Otherwise set p < 0, and do the following for m > k > 0: Set s < S[I]1[k].
For 0 < i < s, set j < CHOICE[k][i] and test if 7 would remain viable for p; when
a; = z. If not, go to B4 if s = 1; otherwise set s < s — 1; and if i # s, swap j
into position s by setting j' < CHOICE[k] [s], CHOICE[k] [i] « j', WHERE[KI[5'] « i,
CHOICE[k][s] < j, WHERE[K][j] < s, and ¢ < ¢ — 1. If there was no exit to B4, set
S[l + 11[k] <« s; also, if s =1 and S[I1[k] > 1, set STACK[p]l <k, p < p+1.

Here is the promised test for viability of j: If STAMP[I]1[j] # NODES + z, set
STAMP[I]1[j] < NODES + z and compute JA[I][j]. Then ‘j remains viable for p;’
means that digit [of JA[I][j] equals d if and only if digit [of pi equals 1.

Step B3 is not yet finished. After the stated loop on k, we need to clear the stack:
While p > 0, set p < p—1, k < STACK[p], and delete CHOICE[k] [0] from all constraints
pr. That means to set j < CHOICE[k]1[0], and for 0 < k' < m with ID[k'] # ID[k]
to set s < SO+ 11[k'] — 1, i + WHERE[K'] [5], and if i < s to do the following: Go to
B4 if s = 0; otherwise set S[I + 11[k'] < s; if s = 1 set STACK[p] «+ k', p < p+ 1;
and if ¢ # s, swap j down as above.

After the stack is clear, we also want to test the overall product constraint p,,
if P =[], SIl+11[k] is at most some threshold (like 25). That involves an inner
loop over P possibilities, in which we find P’ cases that satisfy pm, up to digit [. Then
we rule out all choices of multiplier digits that aren’t present in any of those P’ cases.

The good news is that these data structures require no further updating. Indeed,
steps B4 and B5 of Algorithm 7.2.2B need no amendments and do no downdating.

Sometimes [reaches the limiting precision of our bignums. In such cases one can
usually verify by inspection that no short solutions are being overlooked.

57. The author’s candidates are generated by the respective multiplications 1513378 x
98621, 965289 x 98467, 46007 x 33478, 148669 x 75896, 1380552 x 7089305, 7939486 x
390271, 532207 x 832057, 15543 x 99458, 46966 x 35469, 743713 x 370841.

(The puzzle for d = 0 was the most difficult to find.)

58. Here are the author’s favorites, using positive slack only when it helps: 8282223 x
200956 (A = 4), 95283341007 x 90020507 (B = 6), 1205719 x 6827 (C = 4), 66617057 x
907085 (D = 3), 22222340739 x 509070003 (E = 6), 2592619 x 275009 (F = 3),
13941943 x 68904 (G = 5), 16604761497 x 90007058 (H = 3), 190567 x 98067 (I =
3), 4055903 x 75902 (J = 1), 29885338 x 250309 (K = 6), 18289 x 6842 (L = 3),
18983233124 x 75203 (M = 6), 2855352138 x 70539 (N = 6), 23879578 x 400975 (O = 1),
74080955 x 30078009 (P = 6), 82884224 x 4030208 (Q = 6), 4851881332 x 8500079
(R = 6), 5558467 x 84076 (S = 3), 7407382 x 807509 (T = 6), 82195935 x 54809

October 31, 2020

sort
author

22 ANSWERS TO EXERCISES 7.2.2.8

(U =17), 15009232 x 35704 (V = 6), 43441858589 x 3209004 (W = 7), 6495974 x 7546
(X =8), 128052 x 3975 (Y = 6), 10740737877 x 800300059 (Z = 6).

(The puzzles for E and Z were much harder to discover than the others.)

Junya Take introduced alphabet-shaped skeletons in the special puzzle issue VI of
Sari Kagaku 19 (1981), 25-26; but those puzzles did not indicate all appearances of
the special digit. His alphabet puzzles in Journal of Recreational Mathematics can be
found in 36 (2007), 6364, 263, 355; 37 (2008), 70-71, 160, 250, 253-254, 347, 350; 38
(2014), 55, 58, 129, 132.

59. (This answer has been omitted so that readers can have the fun of discovery.)

64. Let a, b, ¢, d, e, f be the numbers involved, so that a xb=c+d+e = f. We also
have a+b+2ab = a+b+c+d+e+f = 0 (modulo 9), because 0+0+1+1+---+9+9 = 0.
Hence there are six cases, with (a mod 9,b mod 9) = (0,0), (2, 5), (3,6), (5,2), (6,3), or
(8,8). Each case is amenable to hand calculation, after which we conclude that a = 179
and b = 224. [Wonderlijke Problemen (1943), §§235-237.]

65. 44511 x 11513. (Only eight multiplications of 5-digit numbers involve only the
requested digits; and only three of them have skeletons of a unique shape. The other
two such candidates for puzzles are 22431 x 51511 and 41514 x 13331.)

66. The skeleton shown here is solvable for [] # @ only when it Hal]
computes 484 x 7289 and @ = 8; this is a stronger assertion than x el
the statement that the division problem has a unique solution. [See RN
R. Feynman, Perfectly Reasonable Deviations (2005), 4-5. The divi- Oe]
sion problem is due to W. F. Cheney, Jr., AMM 43 (1936), 305.] OO e

68. Assume first that all column sums ¢; of the matrix A are less [J[]J@@

than 9. Let the multiplicand be the (mn + 1)-digit number ob-) Ja[]]

tained by appending the elements of A to the digit ‘4’. (Thus it

is 4001011010010010110010100100001000010001101 in the example.) The multiplier is
a completely hidden (mn — n + 1)-digit number. Each partial product is a completely
hidden number of mn + 1 digits; the offsets are 0, n, 2n, ..., (m — 1)n, implying many
zeros in the multiplier. The total product has 2mn—n+1 digits, of which the rightmost
(m — 1)n and the leftmost (m — 1)n + 1 are obscured. The other digits are specified to
be ((c1 +1)...(cn + 1))10; in the example they’re 3334334.

The idea is that the ‘4’ and the offsets force the multiplier to have the form
2m 0" Lz 10" 0"7121, where each z; is 1 or 2. A solution to the skeleton occurs
if and only if the rows for which z; = 2 exactly cover all columns. Thus, the unique
solution for the example has multiplier 100000020000002000000100000010000002.

With larger column sums, we need more space to do the summing, so the number n
in the above is increased. For example, we’'d use two adjacent digit positions instead
of one, in each block of digits, when 9 < ¢; < 99. But the same general idea applies.

(Hence it is NP-complete to decide whether a given skeleton multiplication can be
solved; also to decide whether or not a given solvable skeleton has a unique solution,
by exercise 7.2.2.1-33. See T. Matsui, J. Information Processing 21 (2013), 402-404.)

80. If we use k colors for the 4 x 4 square and 4 — k for the 3 x 3, the minimum score is
162 +32 43432 for k=1, 82 +824+42+5% for k =2, and 52 + 52+ 62 + 9% for k = 3.
81. ¢1 = 00,—1, P2 = po—2,2, P3 = p, P1 = T3,0.

83. Pixels (z,y) and [z,y] can be represented internally as integers such as 32z + y.

Then shifts o, can be represented as 32a + b, and computations are readily done with
one-dimensional arrays. To generate valid sequences 1 < --- < f4, it’s helpful to

October 31, 2020

Take

Feynman
Cheney
NP-complete
solvable

unique solution
Matsui

7.2.2.8 ANSWERS TO EXERCISES 23

precompute the list of all pixels of B that are covered by a given feasible shift. The Sequential lists
total number of such pixels also helps to identify invalid sequences quickly. dancing links
. . . . Loyd
As soon as the transformations ¢ are known, it’s helpful to have lists of all possible author
mates for each (z,y) and each [z, y], as in Table 1. The sizes of those lists also facilitate Rookwise connectivity

the propagation of forced moves. We also want a list of the pixels that haven’t yet been kingwise connectivity

matched. Sequential lists are good for this purpose, as they adequately support the
deletion operation (see 7.2.2—(18)).

The more elaborate four-way-linked structures of the dancing links algorithm are
also useful. But they should be set up only when a nontrivial matching problem arises,
and used only for vertices whose mates are unknown. D

ol

85. 42 4+ 7% 4+ 14? is uniquely attainable by the dissection

86. There are just four solutions. In order of decreasing “score” they are:

Fulll BiES Fuf D

[The rightmost is due to Sam Loyd in the Ph11adelph1a Inquzrer 26 February 1899.]

87. To avoid “jumping,” in a dissection of w? into u? + v?, we consider the pixels

of B to be either [z,y] for 0 < z,y < u or (z,y) for 0 < z,y < v; and we let

(x,y)o0p = (x4 a,y +b). For example, ¢4 becomes o’ _, in (53), instead of o3 _».

The number of feasible shifts is now 113 = 82+ 7% = (w+u—1)?+ (w+v —1)?, not 92.
) Four new solutions arise in addition to (51):

EH.E B-FEg e P -En

The last of these has ¢1 = 0-1,2, ¢p2 = 01,0, 93 = 00,1, in common with the last of (51).
(b) Tens of thousands of new solutions arise, but they introduce only two new
triples (@1, @2, ¢3) of usable shifts. “Random” examples are:

The latter two have the same shift-triples as the second and fourth in answer 86.
(c) In this case there are no solutions; all matching problems are self-contradictory.

91. The author’s favorites appear in Fig. A-32, after dissection; also in Fig. A-34,
before dissection. (These illustrations appear on separate pages, so that readers who
like puzzles can have fun figuring out how to go from one form to the other.)

Notice that only three pieces are necessary for the 4, 7, and T. (There also are three-
piece dissections for the 1, but only with disconnected pieces.) Rookwise connectivity
can be achieved for 0, 1, 3,5, 7, A, D, F, I, J, L, 0, P, T, U, Z; but not even kingwise
connectivity is possible for C, E, G, K, M, N, Q, R, S, V, W, X, Y.

88. The constructions illustrated here for p = 3 generalize
to all p. Case (a), which is based on Loyd’s construction in
answer 86, needs no rotation. [See ‘Method 1A’ and ‘Method
2A’ in Frederickson’s Dissections book.] Answer 87 shows
that rotation is necessary for (u,v,w) = (15,8,17).

October 31, 2020

24 ANSWERS TO EXERCISES 7.2.2.8

Fig. A—-32. Good ways to fabricate each character of FONT'3& from a 6 x 6 square.

Given the number of pieces and the level of connectivity, preference has been
given to dissections into pieces of nearly uniform size. The number of flipped pieces
has also been minimized, if that doesn’t reduce uniformity. (For example, there’s a
no-flip solution to I that has score 7% + 9 + 92 4+ 11%; but it has been superseded by
a 2-flip solution with the perfect score 9 + 9% + 9% 4+ 92.) Perfect uniformity has been
achieved in cases E, G, I, K, N, R, S, X. The dissections 2, 3, A, and M are unique, in the
sense that no other four-piece dissection has the same connectivity.

92. See Figs. A-33 and A-34. In this case F, J, L, N, P, S, Y, Z are formed from only
two pieces. Perfect uniformity is achieved for C, I, L, S, T, U, Y. (Perfectly uniform
three-piece dissections also exist for L, P, Y; can the reader find them?) The dissections
for B, F, J, K, M, N, S, V, X, and Z are unique, given the number of pieces.

Fig. A—-33. Fabricating a less constrained alphabet from a 6 x 6 square.

October 31, 2020

7.2.2.8 ANSWERS TO EXERCISES 25

93. (Solution by E. Demaine, M. Demaine, and Y. Uno.) All the characters in Figs. Demaine

A-32, A-33, A-34 can be played with online at erikdemaine.org/fonts/dissect/. Be‘:ai“e

n
nondeterministically
Zhou
Wang

CRTL W
L.l ESEEEL
JB N
YT el Hall -t
L SE ™
e FoE Sl N
REXEOETEY
S L Y Y =
Ul f Wl ILEN=FI RN]

Fig. A-34. How to dissect 6 x 6 squares in order to obtain Figs. A-32 and A-33.

95. For example, let Ay be the pixels of A that have viable mates of color k, and
consider the graph G} in which two such vertices are adjacent if and only if they are
rookwise neighbors. If G, isn’t connected, we must nondeterministically choose one of
its components and abandon the others. (In Table 1, G2 and G3 aren’t connected.)

96. Zhou and Wang have achieved seven, in several ways.
999. ...

October 31, 2020

INDEX AND GLOSSARY

I, for my part, venerate the inventor of indexes;

and | know not to whom to yield the preference,

either to Hippocrates, who was the first great anatomiser of the human body,
or to that unknown labourer in literature,

who first laid open the nerves and arteries of a book.

— ISAAC D'ISRAELI, Miscellanies (1796)

Hippocrates
D’ISRAELI

When an index entry refers to a page containing a relevant exercise, see also the answer to
that exercise for further information. An answer page is not indexed here unless it refers to a
topic not included in the statement of the exercise.

Barry, David McAlister (= Dave), iii.

Hauptman, Don, iv.

Nothing else is indexed yet (sorry).

Preliminary notes for indexing appear in the
upper right corner of most pages.

If I’ve mentioned somebody’s name and
forgotten to make such an index note,
it’s an error (worth $2.56).

2
October 31, 2020 6

