LABS PROJECT

Solar Panel
Voltage Converter
for IoT Devices

Yes we CAN exploit
indoor lighting

Power to the IoT

(too)

The circuit shown in

Figure 1 exploits
the unique
ability of the
LTC3129 and

LTC3125-1 to

start up and
operate from an
input power source
as “weak” as 7.5
HW (microwatts) —
making them capable
of operating from small,
low-cost sclar cells with
indoor light levels less
than 200 lux.

To make the low current
start-up possible, both the
LTC3129 and LTC3129-1 draw
a lousy two microamps of current
(even less in shutdown) until three
conditions are satisfied:

By Sunil Malekar (Elektor India labs)

The goal of this microcontroller-free project is to
design a compact supply to power small indoor
IoT devices from a solar panel, indoors (!). A key
aspect of the project is its ability to operate from
an input source as weak as 7.5 pW so that a low cost
mini solar panel can be used. Not forgetting battery
backup and extremely compact size, all thanks to the
LTC3129 IC.

‘=¢'"l"'p""""?#!‘

e the voltage on the RUN pin must
exceed 1.22 V (typical);

The Internet of Things (IoT) is said to all, but Elektor’s field being electronics,

in collaboration with DESIGNSPAE\RK

e the voltage on the V pin must
exceed 1.9V (typical);

e V__ (which is internally generated
from V,, but can also be supplied
externally) must exceed 2.25 V

(typical).

Until all three of these conditions are
satisfied, the part remains in a ‘soft-shut-
down’ or standby state, drawing just
2 JA. This allows a weak input source to
charge the input storage capacitor until
the voltage is high enough to satisfy
all three conditions, at which point the
LTC3129/L.TC3129-1begins switching, and
V,,; Tises to regulation, provided the input
capacitor has sufficient stored energy.

The circuit features battery backup cir-
cuitry around BAT1 (sorry about the miss-
ing T). A CR2032 backup battery provides
power when solar power is insufficient.
The LTC3129 is used in this case, allow-
ing V,,; to be programmed for 3.2 V to
better match the voltage of the coin cell.
With 5 V input from the solar panel on
connector K1 you can expect an output

we're interested in components, com-
ponents... what components?

define a network of physical objects
embedded with electronics, software, sen-
sors and connectivity to provide services

3.2vout

by exchanging data with the connected Starring... = - " o
devices. It's also a globally interconnected ~ Among the key features of the B Ry |Re] b "
& 3 n n
continuum of devices and objects and Types LTC3129 and LTC3129-1 /8 g |g G "
things that emerged with the rise of cheap, ~ buck/boost converters from | * 15 E:: ic1* 5::2 11 E‘F'?
license free RFID technology. Alternatively —good old Linear Technology - L
i ol » i LTC3129
some consider the IoT as a scenario in are a fixed 1.2-MHz operating :L;:CO : p o LTCS12 et
which objects, animals or people are pro- frequency, current mode con- ption : ox] A I
ili i 5
vided with unique identifiers and the ability trol, internal loop compensa- i - : :2:,:: ki
to transfer data over a network without tion, automatic Burst Mode + e oo IFRCACACTE i, o ol |
requiring human-to-human or human-to- operation or low noise PWM — g H H i E = LR -— [s ,J "
computer interaction. Eloquent definitions ~ mode, an accurate RUN pin V3 - = l
s * * * * * IC2.B 202
1C2 = SN74LVC2G04
Cé :1 :7 c5 ﬂRz BATY
=l |3 =
[2 S CR2032
Main Features T,p I -Fuz | §
* one ey ion oer s e threshold to allow the UV, threshold to " LR . = %S
eon creh Gy St SR be programmed, a power-good output -m- P
« Input power down to 7.5 pW usable and an MPPC (maximum power point
e B ot control) function for optimizing power BATSAWS

Choice of LTC3129 or LTC3129-1 converter IC, board configurable for either

transfer when operating from photovol-
Easily configurable for many output voltages

taic cells. The full story is at [1] and [2].

Optional backup battery
Optional super-charge capacitor
Ready-assembled unit with LTC3129-1 fitted, 3V3, MPPC mode.

Let’s see what these devices can do if
it comes to powering IoT devices in an

eco-friendly way. as a function of the IC you decide to use. Hardly a microwatt of solar power is wasted in this circuit.

48 July & August 2015 www.elektormagazine.com

Figure 1. At the heart of the converter is either an LTC3129 or an LTC3129-1 IC, depending on your choice. A number of components need to be configured

www.elektormagazine.com July & August 2015 49

DESIGN

Component List

Resistors

R1 = 2.26MQ 1%, 0.063W, 0603 *
R2,R6 = 2.43MQ 1%, 0603 (R2*)
R3,R5 = 4.22MQ 1%, 0603 (R5*)

R4 = 4,99MQ 1%, 100mWw, *

R7 = 2.2MQ 1%, 0603 *

R8-R12 = 0Q, 0603 *

Capacitors

C1,C2 = 22nF, 25V, 0603

C3,C4 = 10pF, 25V, 0603

C5,C6 = 2.2uF, 25V, 0603

C7 = 470pF, 6.3V, case D

c8 = 22)F, 10V, 0603

C9 = 4.71F, 25V, 0603

C10 = 0.47F, 5.5V, Super Capacitor, radial

Semiconductors
IC1 = LTC3129EMSE#PBF or LTC3129-1 *
1C2 = SN74LVC2G04DBVR

T1l= FDC6312P (Newark/Farnell # 1700713)
D1 = BAT54WS-E3-08

Inductor
L1 = 4.7puH 20%, SMD

Miscellaneous

BAT1 = Lithium Battery, CR2032, coin cell,
3V, 20mm), with PCB mount holder

K1,K2 = 2-pin pinheader

Solar panel, AM-1815CA, 58.1x 48.6mm
(Panasonic)

PCB # 130560-1 v. 1.0 from Elektor Store

Ready assembled unit, # 130560-91 from
Elektor Store. Version: L TC3129-1, 3.3V
out, MPPC, battery excluded.

* Component, value and/or use subject to
user configuration; see text.

elektor(Dlabs

BAT! o

Figure 2. The very compact printed circuit board designed for the Solar Panel converter employs
SMDs for the most part. The board is available not only unpopulated (# 130560-1) but ready
assembled also (# 130560-91, see text and component list).

of 3.2 V on K2. The output voltage can
be adapted to requirements by config-
uring the feedback resistor values in the
case of LTC3129, or by setting the three
programmable pins in case of LTC 3129-
1. Provisions are made in the circuit to
maintain the stability of the output volt-
age. The circuit can also operate without
the coin cell battery.

Since the circuit is designed for indoor use
an additional super-charge capacitor C10
is introduced in the circuit to store the
energy captured from daylight. When the
super charge capacitor is being charged
the circuit will not provide the rated out-
put voltage. T1, a Type FDC6312P Dual
P-Channel 1.8 V Powertrench® Specified
MOSFET from good old Fairchild Semicon-
ductor [3] is used to switch between the
convertor output (V,,,) and the battery
output. The selection is done with the help
of two inverter gates in IC2 (74LVC2G04)
under control of the PGOOD signal sup-
plied by the convertor IC when the input
and output voltages are at their rated val-
ues. If the input voltage is too low then

50 July & August 2015 www.elektormagazine.com

the PGOOD signal is not generated thus
forcing the output voltage to emanate
from the backup battery.

The LTC3129 and LTC3129-1 have differ-
ent configurations and requirements for
their RUN pins. This pin is an input to the
RUN comparator, and the voltage on it
should be above 1.1 V to enable the V.
regulator, and above 1.22 V to enable the
converter proper. Connecting this pin to a
resistor divider from V, to ground allows
programming a V,, start threshold higher
than the 1.8 V (typical) threshold. In our
case, the typical V,, turn-on threshold is
calculated from

V,, = 1.22 x [1 + (R3 / R1)]

Since the input source current is of the
order of microamps, a high value resistor
is required. Assuming R3 is selected as
4.22 MQ and V,, taken as 3.5 V:

1.22 % [1 + (4.22 x 105 /R1)] = 3.5

Hence R1 = 2.26 MQ here.

More configuration options, calculations
and component parameters for the
LTC3129 and LTC3129-1 are shown in
the Configure It! inset.

Board using LTC3129

When a solar panel is connected to the
input connector K1 whose voltage and
currentis 5V, 42 pA, capacitor C7 starts
to charge. Since the charging current is
too small, it takes 20-30 seconds to reach
a voltage of 5 V. When the input supply
voltage reaches 3.5 V, the voltage on
the RUN pin due to voltage divider R3/
R1 equals to 1.22 V which enables the
converter output. At the same time the
PGOOD signal is generated and IC2.A
causes dual transistor T1 to pass the out-
put voltage from converter IC1 to connec-
tor K2. The feedback from V. is sent to
the feedback pin of IC1 via voltage divider
built around R5 and R2 which determines
the output voltage available at connector
K2 (set to 3 to 3.2 V). The feed-forward
capacitor C3 on the feedback divider is
used to reduce burst mode ripple on the
output voltage.

Assuming BAT1 is connected (a 3-V coin
cell), in case of no solar panel or low light
conditions then IC2 switches on transis-
tor T1.B to pass output current to the
load on K2.

When there is no PGOOD signal from the
converter IC, the battery power can be
used as an alternative source until the
solar panel gets sufficient light.

If super capacitor C10 is used when the
solar panel is connected then it starts to
charge. However, due to the very low out-
put current which is in microamps range,
C10 takes a long time to reach a rated
output voltage of 3 to 3.2 V, in fact this
may take 8 to 12 hours. The process does
however store energy in the super capac-
itor for use when required.

Board using LTC3129-1

Both the ICs have the same functionality
but their differences are in the configu-
ration in the circuit. While the LTC3129
uses a voltage divider on the feed-
back pin to set the output voltage, the
LTC3129-1 has its VS1, VS2, VS3 pins
used for the same purpose.

A 3.3-V output voltage is obtained with
VS1 (pin 7) of the LTC3129-1 connected
to the V.. pin through 0-ohm resistor R8;

LABS PROJECT

V52 (pin 6) connected directly to ground;
and VS3 (pin 5) also connected to ground
but through resistor R2 using another
0-ohm resistor.

The MPPC pin is taken to V.. through
0-ohm resistor R10 as our functionality
requires an input source stronger than
10 mA. In case of other configuration and
input source this function can be used and
set by using voltage divider resistors R4
and R7 as discussed. Other functions like
battery backup and super-charge capac-
itor C10 are similar to the board with the
LTC3129.

Building and testing

Provided you have professional (SMD)
production equipment, or access to it,
the printed circuit board with its overlay
pictured in Figure 2 can be built using
either the LTC3129 or the LTC3129-1 with
their required components. That's why a
Component List is published here. Fully
respecting all 100% DIY readers out there
we kindly advise however that the board
is also available ready-assembled through
the Elektor Store as item # 130560-91,
it's the LTC3129-1 version, MPPC mode,
10 mA min. in, 3.3 V, backup battery
not included.

Configure It!

An MPPC (maximum power point control)
programming pin is common to both
LTC3129 variants. To enable the MPPC
functionality this pin is connected to a
resistor divider from V., to ground. If the load on V,

Web Links
[1] LTC3129: www.linear.com/docs/42736

[2] LTC3129-1: www.linear.com/docs/42735
[3] FDC6312P: www.fairchildsemi.com/pf/FD/FDC6312P.html

The components marked * in the sche-
matic are optional and/or need to be
selected depending on the IC used. The
Feedback, RUN, and MPPC voltage divider
resistor values can vary depending on
your choice as well as on the input and
output supply.

In the case of the LTC3129-1, the output
can be configured up to 5 V just by chang-
ing the resistor configuration on VS1 and
VS2 pins of the IC. Be sure to fit either
R11 or R12, not both.

The use of a backup battery and the
super-charge capacitor depends on
requirements — the board can work with-
out them.

Waste Not Want Not

To power the board, a solar panel with an
output voltage rating up 5 V is connected
to K1 and the output load, to K2. By con-
necting a Sanyo AM-1815 solar panel, the
board can operate from indoor lighting,
and if super capacitor C10 is used a use-

ful charge gets built.

Let’s consider charging at 35 pA “sto-
len” from a light source. If maintained
for 24 hours then it will give a cumula-
tive charge of almost 700 pAh, equal to
7 mA for 6 minutes or is almost 42 mA
for 1 minute.

Thus the power supply board is most
suitable in applications where the power
requirement of the devices is within the
above range, which should include many
IoT devices that need to wake up, respond
briefly and go to cybersieep again. Tell us
what you’ve in mind to power with this
circuit — IP address optional.
(130550)

a 0-ohm device. If you want MPPC though, remove R10 and
configure potential divider R4/R7.

MPPC on LPC3129 and LPC3129-1

exceeds

the capacity of the power source, MPPC action will reduce the

inductor current to regulate V,, to a voltage calculated as: v

Vi, = 1.175 x [1 + (R4 / R7)]
Assuming R4 = 4.99 MQ:
1.175 < [1 + (4.99 x 10°/ R7)] = 3.2V

[1+ (4.99 x 105/ R7)] = 2.9787 V
R7 = 2.13 MQ = 2.2 MQ

By setting the V,, regulation voltage appropriately, maximum
power transfer from the limited source is assured. Note this
pin is noise sensitive; therefore minimize PCB trace length

and stray capacitance.

In our example the supply is less than 10 mA and hence MPPC —

ouT

Feedback signal on LTC3129

The feedback pin is a feedback Input to the Error Amplifier.
This pin is connected to a resistor divider from V_ _to

out

ground. To get an output voltage of 3.2 V from our converter,
our assuming R5 = 4.22 MQ we calculate:

= 1.175 x [1 + (R5 / R2)]

R2 = 2.44 MQ = 2.43 MQ

Output voltage configurations on LTC3129-1

VS1, VS2 and VS3 are the output voltage select pins that
need to be connected either to the ground pin or to V_ for
programming the output voltage. These pins should not float
or go below ground. The configuration of these pins for the
desired voltage is given in the table below.

is not used. The pin is connected to V. through R10 which is —— |

vs3 | vs2 vs1 Vour |
0 0 0 2.5V
0 0 VCC 33V |
0 Ve 0 4.1V
0 | vce vice 5V

www.elektormagazine.com

July & August 2015 51

DESIGN

clear about the clock speed of the MCU.
The examples seem to be intended for
4 MHz, but the code is not consistent.
Furthermore it is not clear if the clock
speed is of any importance. To avoid
problems we decided to run the MCU on
4 MHz by modifying the clock prescale
register CLKPR.

The library must be initialized globally as
well as for every button/channel:

e Fill in the structure qt_config_data
(default values worked fine for us);
® For every channel call gt_enable_key

(example values worked fine for us);
e Call gt_init_sensing.

Now you're ready to start sensing. Make
sure to regularly call gt_measure_sensors.
A timer firing every 25 ms is fine, we used
Timerl. Inspect the returned value. If the
flag QTLIB_BURST_AGAIN is set, you must
call gt_measure_sensors again.

When the flags QTLIB_NO_ACTIVITY and
QTLIB_BURST_AGAIN are cleared you can
check the library for active buttons. The
best way to do this is by inspecting the
array qt_measure_data.qt_touch_status.
sensor_states.

It is possible to detect multiple key
presses at once, but our firmware defaults
to one key at a time. The active key is
flagged on the serial port with an ASCII
string “Sxx” where “xx” is from “00” to
“12". Key Up events are not
being sent.

Because port D is
used for QTouch chan-
nels the MCU’s hard-
ware serial port is not
available. For this rea-
son the software uses a
software serial port running at
9600 baud (no parity, 8 data bits,
1 stop bit).

Web Links

Experiments, hints & kinks

@ When you play with different mate-

rials for the panel overlying the key-
pad (glass, wood, acrylic plastic, etc.)
remember to restart the software every
time you have changed something, oth-
erwise the system will not work properly.

@ Instead of using qt_measure_data.
gqt_touch_status.sensor_states to
discover button states you can also
call qt_get_sensor_delta. This func-
tion gives more detailed informa-
tion, but it requires better knowledge
of your hardware. Changing some-
thing in the hardware will change the
delta values. These values can be
very high (no overhead panel) or very
low (thick overhead panel) so make
sure you know the range of these val-
ues for your specific configuration.

(@ A callback qt_filter_callback can
be registered to filter channel mea-
surements before they are processed.
We have added a sim-
ple 4-sample aver-
aging filter here.

@ Changing the default
values of structure gt_
config_data did not
seem to have a

[1] Atmel QTouch Library: www.atmel.com/tools/qtouchlibrary.aspx

[2] Project Software: www.elektor-magazine.com/130105

[3] Atmel QTouch User manual: www.atmel.com/images/doc8207.pdf

70 July & August 2015 www.elektormagazine.com

»{ albeit rather abundant the QTouch documentation is confusing at the same time

lot of effect. Only the detect integration

limit has a noticeable influence as it

slows the system down when the limit

is increased. The following commands

(terminated with <Enter>) can be sent

to the keypad to play with these values:

- [i]1] detect integration (DI) limit
(default = 4)

- [n|N] negative drift rate (default
= 20 [x 200 ms])

- [p]P] positive drift rate (default =
5 [x 200 ms])

- [h|H] drift hold time (default = 20
[x 200 ms])

- [m|M] maximum on duration
(default = 0 [x 200 ms])

- [r]R] recalibration threshold
(default = RECAL_50 = 1)

- [d|D] Positive recalibration delay
DEF_QT POS_RECAL_DELAY
(default = 3)

Refer to the QTouch User Manual [3] for
more details about these parameters. 4
(130105-1)

READER’S PROJECT

Resistance Measurement with the

Arduino

Great for testing humidity sensors

By Burkhard Kainka (Germany)

Next to the oscilloscope,

the chmmeter is the most
widely used T&M device in

the electronics lab. Using this
you can measure component
characteristics, trace wires,
find errors in circuits and
evaluate many types of sensor.
But a normal ohmmeter or
multimeter cannot always fulfill

{4 BASCOM-AVR IDE [2.0.7,8] - [C:\Arbeit_neu\Elektor\Unc\Widerstii]
S Fle Edt Wew Program Took Options Window

=3 wasgeMegal ihas
| sub v Label

—e

X [irsen]

*HELSBR.

| B8 uno_Chmibas [E3

DDRE.3 = 0
Do

Count = Count + 1
Loop Until PINB.3 =
PORTB.3 = 1
DDRB.3 = 1
Print Count

1 Or Count.15 = 1 /S8

| *Calculate Resistancs
| If Count > 4 Thea Count
| BResistance = t = 14
Resistance = Resistance - 40
Print Resistance

Locate 1

Lcd Resistance

Ied " kOhm "

= Count — 4 E

the demands placed upon it,

for example when we need to measure alternating current (AC). This is when a microcontroller can help.
Sure, another opportunity to use the Arduino Uno, our Extension Shield and Bascom!

The starting point for this project was
some newish resistive air humidity sen-
sors, whose resistance varies in the range
1 kQ to 10 MQ. The datasheet states
expressly that they must be measured
using AC. And that’s precisely what a
regular ohm meter cannot do.

A representative example of these resis-
tive sensors (Figure 1) is the HCZ-
H8A(N), which you can obtain from Far-
nell, Conrad, Mantech and other suppliers.
The datasheet can be found here [1].
Normally these sensors are driven using

an AC voltage of 1 V_.. If you connect
them to a signal generator using a volt-
age divider, you can view the result very
clearly on the oscilloscope (Figure 2).
Put your hand close to the sensor and the
humidity increases; you can watch the
resistance fall and the signal voltage rise
at the input of the oscilloscope.

Why can’t you use direct current (DC) for
this? The answer is all to do with polar-
ization. Water molecules, as you probably
know, have polar characteristics; in other
words they are more positive on one side

resistive Scope
humidity
1w sensor
1kHz E

Figure 1. A resistive humidity sensor.

Figure 2. The first test.

www.elektor-magazine.com

and more negative on the other. Gradually
they will align according to the DC applied
and change resistance in the process.

The same effect arises when you mea-
sure the conductivity of water; here too
we must use only AC. A long time ago I
even observed this effect while measur-
ing the conductivity of wood as a function
of humidity. The resistance starts off low
and then rises slowly. A pair of stainless
steel nails pushed into damp wood even
behave something like a battery that
you can charge up. In those days I was
amazed. Since then, however, T found out
that this is the same principle you have
in dual-layer capacitors, also known as
supercapacitors or GoldCaps.

Resistance measurement

How do we get round the fact that micro-
controllers prefer DC? Or that handling
the huge measurement range involved
is no easy task for a 10-bit A-to-D con-
verter? Consequently thoughts turned
towards R-C elements and time measure-

July & August 2015 71

PB3

1k...10M

Figure 3. Resistance measurement using only
one Port pin.

ment. Oh yes, it would be very handy if
we could get away with using only one
pin of the microcontroller too. The result
is the simple measurement circuit using
the Port pin PB3 (Figure 3).

Rx and C1 form an R-C element, whose
time constants need to be measured. C2
works in the background like a backup
battery that provides the charging cur-
rent required. All the same, because C2
is also charged via the resistance under
measurement, the DC flowing through
Rx in the middle is zero. The actual mea-
surement process (Listing 1) proceeds
in three phases:

1. Charging. The Port is connected to V_
via a low resistance, so that C1 charges
immediately and C2 more sluggishly.

2. Discharging. The Port is connected to
GND very briefly, precisely long enough
to discharge C1 but short enough to
leave C2 retaining almost full voltage.

3. Measurement. The Port is configured
as a high-impedance input. We then
measure the time taken for the input
to revert to 1 (High).

The method produces counts that are
within broad limits proportional to the
resistance. With the input unconnected
the test result is limited to 32,768
maximum.

There is still one small problem in that
measurement malfunctions with resis-
tances of significantly less than one
k-ohm. The reason is evidently that with
very small resistances the larger capac-
itor is discharged immediately during
the short discharge pulse, meaning the
charging source is now lacking.

Figure 4. Optimized measurement circuit.

Circuit optimization

For this reason it is better to add an extra
resistor of 1 kQ in series, which you can
easily subtract later on. Because Rx and
C2 are connected in series, you can also
change these around (Figure 4). This
works better because the item under
measurement is now connected at one
end to ground. The ‘no DC’ rule still
applies, so it's AC measurements only.
The same method should be usable for
resistive humidity sensors. The small
number of components involved can be
soldered to a piece of header connec-
tor strip (Figure 5), for connection to
the correspending Arduino socket. strip.
This makes our test adapter a kind of
Mini Shield. For indicating the value mea-
sured we use once more the display on
the Elektor Extension Shield [2], on which
the Arduino connector strips are dupli-
cated. When you plug the Arduino Uno,
the Extension Shield and the test adapter
all together, the whole combination looks
like our heading photo.

Using linear conversion (Listing 2) we
can output the resistance in kQ. The
result is not to be sniffed at: between

Figure 5. Mini Shield for resistance
measurement.

1 k@ and 1 MQ we achieve really good lin-
earity of around 5 %. In the range up to
10 MQ the variance is a bit larger. In any
case, absolute accuracy is also depen-
dant on the tolerances of the capacitors

Listing 1. Measuring
the time to charge.
Count = 0

Portb.3 =1

Ddrb.3 = 1

Waitms 500

Portb.3 = 0
Waitus 1@

Ddrb.3 = 0

Charge

Discharge

Do "Counter
Count = Count + 1
Loop Until Pinb.3 = 1 Or
Count.15 =1
Porth.3 = 1
Ddrb.3 =1
Print Count
Locate 1 , 1
Lcd Count
Led e

Listing 2. Conversion into k-Ohms.

'Calculate Resistance

Resistance = Count * 14
Resistance = Resistance / 40
Print Resistance

Locate 2 ; 1

| Lcd Restistance

i Lecd " kOhm "

If Count > 4 Then Count = Count — 4 Else Count = @ L |

kOhm

' .. .kOhm

and the exact switching threshold of the
input. The method is not noted primarily
for great accuracy, rather for its broad
measurement range and simple circuitry.

Logarithmic measurement
Resistive air humidity sensors possess
more or less exponential characteristic
curves (Figure 6). You need to measure
the resistance and then express it loga-
rithmically. For the Arduino this is an easy
exercise. The calculation is carried out in
several steps (Listing 3), in which we
produce the natural logarithm in Bascom
using the Log function. The following for-
mula delivers the air humidity in percent
from the value Count:

Air humidity [%] =
(103 - 8.9 x In (Count))

Errors arise from a certain curvature of
the characteristic line in the logarith-
mic scale. The values in the formula are
selected so that the smallest errors occur
at 40 % and 80 %. The largest deviation
arises from variations among different
examples of sensor, however. Calibra-
tion is costs money and plenty of simple
humidity measurement devices for sale
are equally imprecise.

Moreover, temperature dependency is
not considered; a room temperature of
20 °C is assumed instead. Nevertheless
you can see variations in air humidity
very clearly. Unavoidable measurement
error is due least of all to any inaccu-
racy in resistance measurement, since in

! Listing 3. Conversion into
| relative air humidity.

"Calculate Humidity

F Count
F = Log(f)
F
F

= F x 8.9

= 183 - F
Humidity = Round(f)
Locate 1 , 6
Led Humidity

Led % "

Web Links

READER'S PROJECT

the logarithmization process these errors
merge into virtually nothing.

As these lines are written, it is cold out-
doors and warm inside. The air indoors
is fairly dry and the sensor (Figure 7)
is indicating 40 %. That could well be
right, according to one of my hygrom-
eters. My flowers urgently need to be
watered. Once I do this, the air humid-
ity rises immediately to 41 % and after
a while to 42 %. Larger variations arise
when you put your hand close to the sen-

sor. With a finger placed either side of
the sensor, it shoots up to over 80 %
quite rapidly.
By the way, the circuit can of course be
used as an ohm meter. All values between
1 kQ and a few MQ can be displayed reli-
ably (Figure 8). K

(150160)

100000

10000 =

8
=

Impedanae(KiY)

=
E

Figure 6. Sensor resistance in relation to
humidity and temperature (Source: Datasheet

(1]

Figure 7. Mini Shield with sensor attached.

Figure 8. Ohmmeter test.

[1] www.farnell.com/datasheets/1355478.pdf

[2] www.elektor-magazine.com/140009

www.elektor-magazine.com July & August 2015 /3

72 July & August 2015 www.elektor-magazine.com

LABS PROJECT

MIDI Analyzer

~ MIDI In/Out module for Arduino and friends

Once again our kitchen website at www.elektor-labs.com proves
a valuable source of inspiration: original poster (OP) ‘midi-ra-
kete’ followed up a project he had had published twenty years
ago in Elektor with an updated version, the MIDI Channel Ana-
lyzer MKII [1]. In that project a set of sixteen LEDs, one for
each channel, was used to indicate when communication was
occurring on MIDI channels 1 to 16, for example between a
controller keyboard and a synthesizer. (Note that the chan-
nels are in fact numbered from 0 to 15 within the MIDI data.)
However, the unit does not show what types of MIDI messages
are being sent over the wire.

I have personally become interested recently in electronic music
production and find it a fascinating hobby, with some similarities
to programming. Although I don't get up on stage to perform
and so don’t often have to worry about connecting various
pieces of equipment together, it struck me that a small tool
that decodes and displays MIDI messages could nevertheless
be very handy. As luck would have it, my colleague Clemens
Valens had just designed a small MIDI module for his J°B syn-

78 July & August 2015 www.elektormagazine.com

thesizer [2]. It consists of a microcontroller with a built-in serial
interface, configured to receive and transmit MIDI messages.

The MIDI physical layer

No great ‘intelligence’ is required in such a device: the MIDI
signals are nothing more than data bytes transmitted serially
at a fixed data rate of 31250 baud [3]. Unlike, for example,
RS-232, the interface does not use defined voltage thresholds
for the low and high levels that correspond to individual data
bits and start and stop bits. Instead, the interface is based on
a 5 mA current loop between the MIDI Out of one device and
the MIDI In of another. A current flow represents a logic zero,
while the absence of a current represents a logic one. Fig-
ure 1 shows the implementation in more detail. MIDI In and
MIDI Out interfaces each require two pins, and two devices are
connected together using a two-wire cable. One of the output
pins is permanently pulled to +5 V via a resistance of 220 Q.
In order to send a logic zero, the second output pin is taken
to ground, also via 220 Q. The result is a small current flowing
through the pins of the MIDI In connector on the other device.

To send a logic one, the second
output pin is taken to +5 V, and then
no current flows. The arrangement is therefore,
conveniently enough, compatible with UARTs operating
at TTL logic levels.

On the MIDI In side there is an optocoupler which includes a
phototransistor. When a current flows in the MIDI cable this
transistor pulls the output to ground; in the quiescent state
the output swings to +5 V. We can therefore connect this sig-
nal directly to the RX input of a microcontroller.

The two connections used for input and output are almost
invariably taken to pins 4 and 5 of a five-pin DIN socket on the
MIDI device. Externally, therefore, MIDI In and Out connectors
look identical, but of course separate sockets must be provided
on any device that needs both input and output functions.

The hardware

The characteristics described above mean that it is easy to
design a circuit to add a MIDI input and output to an existing
microcontroller board. It will come as no surprise that I felt
that the best choice for connecting the MIDI module to the
microcontroller board was to use an Embedded Communication
Connector (ECC). So, what we need to do is add an ECC to
Clemens’ circuit board and then we can, for example, simply
connect the MIDI interface board to the proven combination
of an Arduino Uno and an Elektor extension shield [4].

The resulting circuit is shown in Figure 2. On the left is the
MIDI input with a type 6N137 optocoupler. The output of the
optocoupler is connected to pin 6 of the ECC (K2), which will in
turn be connected to the RX pin on the microcontroller. Pin 5
of the ECC carries the microcontroller’s TX signal to the MIDI
module, which we use to drive the MIDI output socket (K3)

By Jens Nickel

In this article we extend the familiar pairing of the Arduino
and the Elektor Extension Shield into a module offering

a MIDI (Musical Instrument Digital Interface) input
and output. Its Embedded Communication
Connector (ECC) allows it to be connected
to other microcontroller boards as well.
The demonstration firmware decodes MIDI
messages and shows them on a display, but
the software modules we use lend themselves
to a wide range of other applications.

Figure 1. MIDI signals are transmitted using a current loop, where logic
zero is represented by a current flowing and a logic one by the absence of
a current. RX and TX can be connected directly to a microcontroller with 5 V
logic levels.

o=
g
8

000 QR

; : D

2 - 3 :
o 1N4148 3

= m 6N187

220R 7]

LN E

ECC

K5

X e
5|®

R4

150169 - 11
L |

Figure 2, Circuit diagram of the MIDI In/Out module.

www.elektormagazine.com July & August 2015 79

Component List

Resistors
R1,R2,R3,R4 = 220Q
R5 = 1kQ

Semiconductors

D1 = 1N4148
LED1 = LED, green, 3mm
IC1 = 6N137, DIP8 (incl. socket)

Miscellaneous

K1,K3 = DIN socket, PCB mount, 180°

K2 = 10-way (2x5) boxheader, 0.1” pitch
K4 = 5-way pinheader receptacle, 0.1” pitch
K5 = 2-way screw terminal block, 0.2" pitch
PCB # 150169-1 v1.0

directly. The microcontroller board supplies power at +5 V to
the circuit via pin 9 of the ECC, and an LED is provided to indi-
cate when power is present,

Ton Giesberts of Elektor Labs has designed a printed circuit
board for the module (see Figure 3), which is perforated to
allow it to be separated easily into two parts [5]. The right-hand
part can be used on its own as a simple MIDI input, while the
left-hand part can be used as a MIDI output (with MIDI signals
supplied at K5) or as a flexible DIN-socket breakout board,
with K4 as its input. Qur Elektor Labs prototype (Figure 4)
uses a pinheader for K4, although a header socket would be
a better choice to reduce the risk of accidental short-circuits.

The MIDI Protocol

Figure 3. The printed circuit board can easily be cut into
two pieces.

The printed circuit board is available from the Elektor Store [6],
and populating it should present no difficulties.

Software

The populated MIDI module is connected to the ECC header
on the extension shield using a ten-way ribbon cable, and the
extension shield is in turn mounted on the Arduino Uno. The
ATmega328P on the Arduino Uno can now receive MIDI bytes
using its UART, but of course we need some software [6] to
make our MIDI analyzer a reality. Fortunately the MIDI proto-
col is not too complicated (see text box). The most important
MIDI messages almost all comprise three bytes, and it is easy
to detect the first byte of a three-byte message. The software

Despite what many think, the MIDI protocol is in fact
rather simple. Most MIDI messages, for example sent
from a controller keyboard to a hardware or software
synthesizer, consist of three bytes. The first byte
comprises a command in the upper four bits and a MIDI
channel number from 0 to 15 in the lower four bits. The
most significant bit of this byte is always set and the
following two bytes always have values in the range 0

to 127 and hence have their most significant bit clear. This
makes it easy to detect the beginning of a message in the
data stream; a similar very simple mechanism was used
in the ElektorBus protocol.

The software for this project [6] recognizes the four
most important MIDI commands. Two of these (90 hex
and 80 hex) are ‘note off’ and ‘note on’ messages. The
second byte encodes the pitch of the note in semitones
as an integer from 0 to 127: thus twelve values cover
one octave. The third byte, again from 0 to 127, is a
velocity value corresponding to how quickly the key on the
keyboard was pressed or released.

The command BO hex begins a ‘control change’ message
and is followed by a controller number (from 0 to 127)
and a new control value (again from 0 to 127). A
controller number is assigned to each of the parameters
that affect the sound produced by a synthesizer so that
they can be controlled over MIDI, even in real time

80 July & August 2015 www.elektormagazine.com

gfgf_:‘ NT VE | NOTEON

CH CHANNEL 0..15

NT NOTE 0..127
804ex - VE HOTEOFF VE VELOCITY 0..127
+CH
BOhex CC CONTROLLER 0..127

cc CV | CONTROLLER

+CH VALUE CV VALUE 0..127
Edex | o | pu |PimcHeenn P iy MIGH 0.127
+CH PL LOW 0..127

during a performance. For example, controller number 1
is reserved for the modulation wheel found on almost all
controller keyboards. More details on this can be found
at [8].

The command EO hex begins a ‘pitch bend change’
message. Fine resolution is required for this function, and
so a range from 0 to 16383 (14 bits) is provided for. The
second byte of the message carries the least significant
seven bits of the value, and the third byte the most
significant seven bits.

LABS PROJECT

carries out the following tasks.

=

. Initialize the UART and set the data rate to 31250 baud.

2. Store received bytes in a circular buffer under interrupt
cantrol,

3. Periodically check the circular buffer; detect a new MIDI
message on the basis of its first byte; decode this byte and
the two following bytes; store the decoded elements in a
dedicated structure; and then call a specified function to
indicate that a new MIDI message has been decoded.

4. Show the elements of the newly-received message on the
display. A message will remain on the display until a new
message is received (for example when the value for one
of the MIDI controllers changes), at which point the display
will be updated. This makes it easy, for example, to watch
the effect of adjusting a controller.

The ideal situation is that we have a separate software module
responsible for each of these tasks, in the interests of improv-
ing reusability, portability and ease of maintenance. Depen-
dencies (including time-dependencies) between the modules
should be kept to a minimum, and we shail return to this issue
later. The Embedded Firmware Library (EFL) [7] is a natural
choice for our demonstration software, as it already includes
an implementation of the circular buffer and a display library,
which in turn are based on board and microcontroller files for
the extension shield, the Arduino Uno and the ATmega328P.
Essentially all that remains is to write a small MIDI library to
handle task 3 above, although as we shall see there is rather
a lot hidden in that word ‘essentially’.

MIDI decoding

The MIDI messages are decoded in a small library called
MidiEFL.h/.c. Like other EFL protocol libraries that we have
described in Elektor (such as the ElektorBus library), it is
designed so that it can work with a range of different physical
communication channels, and so in principle it could even be
used to decode MIDI messages received over a TCP/IP connec-
tion. All that matters is that the bytes to be decoded arrive in
a circular buffer, whose location is communicated to the library
when it is initialized as follows:

MIDI_LibrarySetup(UARTInterface_Send, @,
UARTInterface_GetRingbuffer(0), MIDIIn_Process);

The first parameter specifies the function that should be called
when a MIDI message is to be sent. The second parameter
specifies that UART interface 0 is to be used to transmit and
receive bytes. (In fact there is only one UART interface on the
Arduino Uno.) The third gives the circular receive data buffer,
and the last parameter is a pointer to a callback function that
must be implemented in the main part of the code. This func-
tion will be called by the MIDI library when a new message
has been received and decoded.

The main loop of the program must regularly call the library
function MidiProtocol_Engine(), which handles the work
involved in the third of the tasks listed above.

You‘ve got MIDI
As soon as a message has been decoded it is stored in a struc-

Figure 4. The Elektor Labs prototype fitted with two DIN sockets.

|
(COI;;JMN 0 COLUMN MAX
0
ROW(
1 2
1
3 4 5
2

|

Figure 5. The extended display library allows for the configuration of fields
in the display area where text and numbers can be shown. Here a three-
line display is shown divided into six fields numbered from 0 to 5.

ture ReceivedMidiData of type MidiData. The main part of
the code can obtain a pointer to this structure using the func-
tion Midi_GetReceivedMidiData(), and hence can access the
decoded elements. In the callback function mentioned above
we now have convenient access to all the elements of the most
recently received MIDI message, and we can show them on
the display. For example, typical code might be as follows:

MidiData* ReceivedMidiData =
MIDI_GetReceivedMidiData();
Display_writeNumber(o, 0, ReceivedMidiData->Channel);

This code will show the channel number of the received mes-
sage in the first line of the display.

Unfortunately the EFL display library only includes commands
for showing text and numbers on a specified line of the display,
always starting from the extreme left of that line. The display
on the extension shield has only two lines, and we wish to
show four elements on it. To resolve this problem the library
was extended so that it is possible instead to specify that text
and numbers are shown in any one of up to eight possible
fields. The fields are numbered from 0 to 7 (see Figure 5),
and this number is called the field’s ‘position’. Positions can
also be used to select a particular LED within an LED block or
a button within a button block.

The output commands for controlling an LED (ON = 1 or

www.elektormagazine.com July & August 2015 81

OFF = 0) within an LED block and the output of text to a spec-
ified field of the display therefore look rather similar:

SwitchLED (LEDblocknumber, positien, ON);

Display_WritePosition (displaynumber, position, “ON”);
The coordinates and the extents of the fields in terms of char-
acter spaces can be specified from the main code using the
function Display_SetPosition(uint8 DisplayPosition,
uint8 row, uint8 column, uint8 columnmax). To further
simplify matters, upon initialization the display library sets up
two fields on each row of the display, each occupying half the
row. So in our case we have four fields, all the same size, in
which we can show the four most important elements of the
received message (see Figure 6).

To keep storage requirements to a minimum, different dis-
plays in a single system cannot be configured differently from

The EFL InOut library

one another, and a field is not allowed to occupy more than
one row. Of course, the functions can be enhanced to remove
these restrictions if required.

Flexible output

If writing to the display is implemented directly inside the
function that is called by the MIDI library when it has decoded
a new message, we have voluntarily created a close coupling
between the two modules, in particular from a timing point of
view, and this is not desirable. A better idea is not to update
the display immediately. It is possible that further extensions
to the software will include tasks that require higher prior-
ity: for example we might wish to log incoming MIDI bytes
with timestamps, or perhaps at some point we might create a
mini-synthesizer to turn incoming note messages into sounds.
The solution to this problem involves making an entry in a spe-
cial table (called ‘StateTable") for each of the different MIDI

We can illustrate the

advantages of the library

using a simple example.

Imagine that we want to g
design a power supply, sk

in which there are four = - OUTRUT,,
application variables, or state

values, called U_setpoint, U_ @ =, Sy 2

actual, I_actual and I_max. e] =

There are input controls (such \ e
as buttons, rotary encoders or @ l'. _

potentiometers) that adjust O O —" 2 @)

the values of U_setpoint and 5 ﬂ ® @ EncoderTable

I_max, and the values of U_ H [1on]

setpoint, U_actual and so on . N O 0

are to be output, for example InputTable . OO

to a display. We would like Stat:TabIe =

first of all to be able to run the .

software on different boards ReactiznTable

with a minimum of adaptation.

For example one board might
offer a potentiometer for

setting U_setpoint while another might offer ‘up’ and ‘down’
buttons. Of course some changes will be needed to the code

when we port it, but the idea is to make it as simple as
possible by isolating the hardware-dependent parts of the
program in the ApplicationSetup() function.

A second objective is to decouple from one another, both
from a software perspective and a temporal perspective,
the processes involved in input, changing of state values,
and output. If readings of a value are taken at the rate of a
thousand per second it does not make sense to update the
display with each one as it arrives.

The third objective is that we would like to minimize the
programming effort involved. User inputs that involve
setting values always need to be validated against upper
and lower limits, and the new framework should spare us
the drudgery of coding line after line of ‘if" statements.

82 July & August 2015 www.elektormagazine.com

The new EFL common library InOutEFL.h/.c maintains
several tables which must be initialized at the beginning
of the program. The functions State_Add (), Output_
Add(), and so on are used to generate a new entry in the
corresponding table; they return the index of the newly-
added entry, which can then be used as a parameter when
creating a new entry in another table. This approach can
be compared to the wiring of a circuit board: adding table
entries is like adding wires to create connections between
inputs, state changes, and outputs.

At the heart of the architecture is the StateTable. Each
entry in this table gives the current (16-bit) value of an
application variable, its minimum and maximum permitted
values, and up to eight flags. The InputTable links input
events (such as the pressing of a particular button specified

LABS PROJECT

elements to be displayed. Alongside the current value of each
element we maintain a flag that indicates whether the value
has changed since we last refreshed the display. Inside the
function that is called after each MIDI message is decoded we
write the new values of the MIDI elements into the StateTable.
If the value does not agree with the value previously stored
there, the ‘'STATE_UPDATED’ flag is set.

We must now periodically check whether the display needs
refreshing with updated values. Note that how often this is
done is now independent of the rate of arrival of MIDI mes-
sages. Refreshing the display in response to changes in values
is done with a call to the function Reaction_Process() in the
main program code, implemented in a new EFL module called
InOUtEFL.c. The function inspects the table entries to see which
have their flag set, and then for each calls the required output
function. The desired output functions are given in a table called

by the button block number and its position within the
block) with an index in the StateTable. Alongside this is

a step size by which the value of the variable is to be
adjusted when the event occurs, and the flag that is to be
set when the event occurs.

In the InputTable it is therefore paossible to specify, for
example, that when a particular button is pressed the
variable U_setpoint (which might represent a target voltage
in millivolts) is to be increased by 100. When the value is
increased it is checked to verify that it lies within the preset
limit values. If the upper limit is exceeded the value will
either be clamped to the upper limit value or reset to the
lower limit value, depending on the configuration. The latter
alternative allows values to be adjusted in a ‘wrap-around’
fashion. If the value changes as a result of this process,

a specified flag is set: in this case we would choose the
STATE_UPDATED flag.

The OutputTable is the counterpart to the InputTable. It
stores the output functions (which might be implemented
for example in the display library) along with the block
number and position of the output element. Any function
can be used here as long as it has the signature:

functionname (uint8 blocknumber, uints position, intl6

numericalvalue)

or:

functionname (uint8 blocknumber, uint8 position, charx
textstring)

The EncoderTable stores encoder functions that

convert numerical values into text strings. They can be
implemented in any of the various EFL modules, but must
have the signature:

char* functionname(intl6 numericalvalue)

0 1
IION” 1
CH "OFF” »CC
2 3
NT/CC VE/CV

Figure 6. The various elements of a received MIDI message are shown in
four fields on the display: CH=channel; NT=note (as a text string); VE=key
velocity; CC=controller number; CV=controller value.

An entry in the ReactionTable links an index to the
StateTable (or equivalently an application variable), a flag,
an output function and optionally an encoder, all stored

as indices to the respective tables. To ensure that output
functions are triggered it is necessary to call the function
Reaction_Process() regularly, This function inspects the
entries in the ReactionTable and for each checks whether
the flag specified to trigger the reaction that accompanies
the specified application variable in the StateTable is set. If
it is, the output function is called. Normally this function will
either output the current value of the application variable
or the result of passing it through the encoder function.
Finally, the flag in the StateTable is cleared,

Continuing with our example, we could define an entry in
the OutputTable to output text at position 0 of display 0.
Also, we could implement an encoder function to convert

a value in millivolts to a text string with the format

‘x.yyy V. This function will be added as a new entry in the
EncoderTable.

A new entry in the ReactionTable can now be used to link
U_setpoint, the STATE_UPDATED flag, and the indices of the
entries we have just generated in the OutputTable and the
EncoderTable,

Now, if we press the button and increase U_setpoint by
100 mV, upon the next call to Reaction_Process() the
encoder function will be called and then the text will

be written to the display. Altering the code to use the
Continental European-style comma instead of the decimal
point is easy: we simply write a slightly modified version of
the encoder function, add it to the EncoderTable, and then
change the corresponding index in the ReactionTable. This
can be done even while the program is running, for example
if we wish to allow the user to change the language of the
user interface.

There will be more on the EFL InOut library in a future
edition of Elektor.

www.elektormagazine.com July & August 2015 83

L
By

OutputTable that must be set
up in advance. A third table,
called ReactionTable, links the
two others, ensuring that
there is an output function
associated with each value
that might change. It is
also possible to provide
» an index into a fourth
table, called EncoderTable.
An example will help explain the
interrelationships between these
tables, and we will now look at how a received
MIDI note value is processed.
At the beginning of the program we set up some table entries
as follows.

S_MidiIn_Note = State_Add(e, @, 127,
STATE_MINMAXMODE_OVERFLOW) ;

O_Write_Pos2 = Qutput_Add(Display_WritePosition, @,
2);

E_Midi_Note

Encoder_Add(Midi_NoteEncode) ;

Reaction_AddOutput (S_MidiIn_Note, STATE_UPDATED, O_
Write_Pos2, E_Mdidi_Note);

When a new note value (which must be in the range from 0
to 127) is received it must be written to the StateTable and
the STATE_UPDATED flag must be set. This is implemented in
the callback function as follows.

MidiData* ReceivedMidiData =

Midi_GetReceivedMidiData();
State_Update(S_MidiIn_Note, ReceivedMidiData->Note);

Internet Links

: s AITIHEND — AR

T ——

P AT TITTT IO NN

The function Reaction_Process () is periodically called in the
main loop, and the function checks whether the flag is set. If
it is, then the encoder function that has been configured to
handle the value is called: in this case the encoder function is
Midi_NoteEncode(), which is implemented in the EFL MIDI
library. This function takes the note value from 0 to 127 as
a parameter and converts it into a string such as ‘C#4’, This
string is in turn passed as a parameter to the configured out-
put function Display_WritePosition(), which writes the text
to position 2 on display 0.

The behaviour of the software can be modified simply by chang-
ing table entries, even dynamically while it is running. For
example, the user interface language could be changed simply
by changing the table entry for the encoder function.

Hardware independence

We have brought the degree of hardware independence and
modularity of EFL applications to a new level. At the start of
the program in the ApplicationSetup() function all we need
to do is suitably initialize our tables, and then everything will
be taken care of and the various modules are kept decoupled
from one another. We can easily port the firmware to another
board, where for example we might want to use display 1
rather than display 0 to show the MIDI data, or we might
want to change the positions where the various elements are
displayed; another possibility might be to output the decoded
MIDI elements over a (different) UART instead of showing them
on a display; and yet another might be to visualize keyboard
velocity information using the brightness of an LED. All these
can be implemented with simple modifications to the setup
code, leaving the rest of the program unchanged.

In a future article we will expand this project to include user
input. The text box ‘The InOut Library’ gives an outline of the

idea. Watch this space! K
(150169)

[1] www.elektor-labs.com/project/midi-channel-analyzer-mkii-140065-i.13380.htm!

[2] www.elektor-magazine.com/140182
[3] http://en.wikipedia.org/wiki/MIDI
[4] www.elektor-magazine.com/140009

[5] www.elektor-labs.com/project/150169-midi-analyzer-light. 14481 .html

[6] www.elektor-magazine.com/150169
[7] www.elektor-magazine.com/120668

[8] www.midi.org/techspecs/midimessages.php

84 July & August 2015 www.elektormagazine.com

A Raspberry Pi Wobbulator

_ | READER's PROJECT |

With AD9850 DDS and AD8307 Log. Detector

As you can see in Figure 1, a wobbula-
tor (or ‘sweep generator’) is a piece of
test equipment which is used in conjunc-
tion with an oscilloscope to measure the
frequency response characteristics of an
(RF) circuit. It uses a “ramp” or “saw-
tooth” function generator connected to
a voltage controlled oscillator (VCO) to
produce an output sweep over a defined
frequency range. The response character-
istics of the circuit under test — usually a
filter or an amplifier — can then be dis-
played on an oscilloscope. A wobbulator
is a useful tool for aligning the interme-
diate frequency (IF) stages of superhet-
erodyne receivers, but can also be used
to measure the frequency response char-
acteristics of RF filters and other circuits.

Frequency (Hz) |

Start Stop

By Tom Herbison, MI0IOU (United Kingdom) Twitter: @TomHerbison

The Raspberry Pi computerette harnesses so much
connectivity it's just crying out for extension circuits to make

it do unusual things. This Reader’s Project covers the evolution
of an RPi and a purpose designed extension circuit into a DIY RF sweep generator, or ‘wobbulator’.
The project started out at elektor-labs.com and went through the full Learn, Design, Share cycle.

One of the great things about a wobbu-
lator is its direct presentation of the filter
or amplifier response curve, allowing you
to see specifications like the 3-dB roll-off
points, slope steepness, and in-band ripple,
“live” on the screen as you tweak the circuit
under test. Multi-stage RF passband and
notch filters especially are a joy to ‘wobble’
into shape with instant visual feedback on
their response. It's like drawing the curve
in small steps and can keep you busy for
hours to get the textbook shape.

The Plan

While in the dim past a wobbulator was
a complex, expensive all-analog instru-
ment (even with vacuum tubes), today
we have little computers like the RPi to

WA
Wobbulator > VCO >
Circuit
Under
X Input Test
A
2 = ‘Ylnput
8 —
& |
(="
s
I—»F!equency

Oscilloscope

130484 - 12

Figure 1. Basic operation of a wobbulator, also known as a sweep frequency generator,

do the job with simpler hardware when
it comes to control, and with the luxury
of software, which can be changed and
optimized for best results.

The Raspberry Pi Wobbulator implements
the functionality of a conventional wobbu-
lator by using a Raspberry Pi computer,
a Direct Digital Synthesizer (DDS) mod-
ule and an Analog to Digital Converter
(ADC) module. The Raspberry Pi's General
Purpose Input Output (GPIO) interface is
programmed to control the DDS module
to generate the frequency sweep and to
communicate with the ADC module to
measure the response of the circuit under
test. The Graphical User Interface (GUI)
allows the user to choose the parame-
ters for the frequency sweep and also
displays the results,

The Circuit

Figure 2 shows the |latest version of the
RPi hardware extensions that together
form the wobbulator.

Initially the wobbulator had a single input
amplifier/buffer followed by a rectifier to
display the linear response of the cir-
cuit under test. As the project evolved
this circuit was extended with a logarith-
mic amplifier for a dBm readout on the
Y scale. The LIN amplifier was retained
though, here it is seen around FET U1,
with diodes D1 and D2 doing the RF
rectification.

www.elektormagazine.com July & August 2015 85

