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The standard precisely describes its data formats
and the results of arithmetic operations; it must do so
to be of use to the producers of microprocessor hard-
ware and software, who cannot afford to provide the
support software and personnel to perform conver-
sions between systems conforming to a less rigid
standard. It allows for future developments such as
interval arithmetic, which provides a certifiable re-
sult despite roundoff, Over/Underflow, and other ex-
ceptions. And it allows the use of reserved operands
to extend thenumerical data structure, with complex
infinities, say, orwith pointers into heaps ofnumbers
with extended range and precision.
Programs which now run in higher-level languages

like Fortran should be portable to a system with the
new standard arithmetic at the cost of a modest
amount of editing and a recompilation, and then
should execute with results almost certainlyno worse
than before, though programs which used to give in-
correct results might now give diagnostic messages
instead.

1.0 Narrative description of the standard
arithmetic

1.1 Sketch of the standard floating-point system.
Combinations of floating-point formats: one of
(A) single
(B) single and single-extended
(C) single and double
(D) single, double, and double-extended
(E) single, double, and quad
Arithmetic operations:

Add, Subtract, Multiply, Divide, Remainder,
Square Root, Compare, Round to Integer, Con-
version between various floating-point and in-
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teger formats, Binary-Decimal conversion.
Rounding modes:
(A) Round to Nearest, or optionally
(B) Round-to Nearest, toward 0, toward +oo,

toward -oo.

Rounding precision control:
(A) Allow rounding of an extended result to the

precision of any other implemented format,
while retaining the extended exponent.

(B) When all operands have the same precision,
allow rounding of the result to that precision.

Infinity arithmetic:
(A) Affine mode: -.00< +00.
(B) Projective mode: -0=+oo.

Denormalized arithmetic:
(A) Warning mode
(B) Normalizing mode (optional).
Floating-point exceptions, with sticky flags and

specified results. The default response is toproceed; a
trap to user software is optional.

(A) Invalid-Operation
(B) Overflow
(C) Underflow
(D) Division-by-Zero
(E) Inexact-Result.

1.2 Basic floating-point formats. Any nonzero real
number may be expressed in "normalized floating-
point" form as ± 2e*f, where e is the signed integer ex-
ponent and the significant digit field f satisfies 1 < f<
2. The standard describes a machine representation
of a finite subset of the real numbers based on this
floating-point decomposition, and prescribes rules
for arithmetic on them.
There are three basic formats, single, double and

quad (See Table 1), to be implemented in one of the
combinations shown in Section 1.1. Single is required
since it is useful as a debugging precision and is effi-
cient over a wide range of applications where storage
economy matters.
A normalized nonzero number X in the single for-

mat (see Section 2 for double and quad) has the form
X = (-1)S*2E-127*(1.F) where

S = sign bit
E = 8-bit exponent biased by 127
F =X's 23-bit fraction which, together with an im-,

plicit leading 1, yields the significant digit field
14.._29.

The values 0 and 255 of E are reserved to designate
special operands discussed in later sections; one of
them, signed zero, is represented by E = F =0. Nor-
malized nonzero single numbers can range in
magnitude between 2-126*1.000... .00 and
2127*1.111 ... 11, inclusive.
The number X above is represented in storage by

the bit string
|-S E F

This encoding has the special property that the order
of floating-point numbers coincides with the lex-
icographic order of their machine counterparts when
interpreted as sign-magnitude binary integers,
facilitating comparisons of numbers in the same for-
mat.

1.3 Extended formats. To perform the arithmetic
operations on numbers stored in the single and dou-
ble formats, a system will generally unpack the bit
strings into their component fields S, E, and F.
Moreover, the leading significant bit will be made ex-
plicit, and perhaps.the bias will be removed from the
exponent.
The standard provides a way to exploit this un-

packed format by admitting the optional single-
extended and double-extended formats (See Table 2).
If implemented at all, only one extended format
should be provided, single-extended in systems with
single only, and double-extended in systems with
single and double only.

Table 1.
Basic floating-point formats.

SINGLE DOUBLE QUAD
Fields and widths in bits:

S = Sign 1 1 1
E = Exponent 8 11 15
L = Leading bit (1) (1) 1
F = Fraction 23 52 111
Total Width (1)+32 (1)+64 128

Sign: + / - represented by 0/1 respectively

Exponent: biased integer
Max E 255 2047 32767
Min E 0 0 0

- Bias of E 127 1023 16383

Normalized numbers: (quad may be unnormalized)
RangeofE (Min E + 1) to (Max E - 1)
Represented (-1)s * 2E-Bias *(L.F)

number

Signed zeros:
E Min E Min E Min E
L (0) (0) 0
F 0 0 0

Reserved operands:
Denormalized numbers:
E Min E Min E Min E
L (0) (0) 0
F nonzero nonzero nonzero
Represented (-1 )s*2E-.Bias*(L.F)
number

Signed oo's:
E Max E Max E Max E
L (0) (0) O or 1
F 0 0 0

NaNs:
E Max E Max E Max E
L (0) (0) O or 1
F nonzero nonzero nonzero
F = system-dependent, possibly diagnostic, information.
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Double-extended format (see Section 2 for single-
extended) consists of the following fields:
S=sign bit
E+B =biased exponent; E is a signed integer
spanning at least the range-16383 to 16384; the
bias B may be zero

L.F=a leading integer bit L followed by a frac-
tion F of at least 63 bits.

A number X is then given by X=l-1)s*2E-B*(L.F).
The case E = maximal-value is discussed in later sec-
tions. Two possible implementations ofE = minimal-
value are described below (Section 1.12, Denormal-
ized and unnormalized numbers); signed zero is repre-
sented by E = minimal-value and L.F = 0.0. Zero is
sometimes referred to as "normal zero" to distin-
guishit from the "unnormal zeros" withE > minimal-
value and L.F = 0.0. The latter behave much as
nonzero numbers in the arithmetic operations.
To match the exponent range of quad the unbiased

double extended exponent must range between
-16383 and 16384 as indicated above. This suggests
that 'the exponent be represented in 15 bits by its
negative in two's complement, biased by 16383 as in
the basic formats, or biased by -1. The choice of the
exponent representation impacts the use of the
nonzero numbers at the bottom of the exponent
range.

Table 2.
Extended formats.

SINGLE-EXTENDED DOUBLE-EXTENDED
Fields and widths in bits:

S = S.ign 1 1
E = Exponent 11 15
L = Leading bit 1 1
F = Fraction > 31 63
Total width > 44 80

Sign: + / - represented by 0/1 respectively

Unbiased exponent: (may be stored with a bias)
Max E > 1024 16384
Min E < -1023 -16383

Numbers:
Range of E (Min E + 1) to (Max E - 1)
Represented number (-1)s*2E*(L.F)

Bottom of the exponent range:
E Min E Min E
R Oor 1 or 1
Represented number (-1 )s*2E+R*(L.F)

Signed zeros: use special indicator bits, or else...
E Min E Min E
L.F 0.0 0.0

Reserved operands:
Signed 00's: use special indicator bits, or else...
E Max E Max E
L O or 1 O or 1
F 0 0

NaNs: use special indicator bits, or else.
E Max E Max E
L D or 1 0 or 1
F nonzero nonzero
F = system-dependent, possibly diagnostic, information.

Extendeds are assumed to be few in number. The
first implementations of this standard will probably
allow access to extended entities only in assembly
language. High-level languages will use extended (in-
visibly) to evaluate intermediate subexpressions,
and later may provide extended as a declarable data
type.
The presence of at least as many extra bits of preci-

sion in extended as in the exponent field of the basic
format it supports greatly simplifies the accurate
computation of the transcendental functions, inner
products, and the power function yx. In fact, to meet
the accuracy specifications for binary-decimal con-
versions, some extended capability must be
simulated by system software if an extended format
is not implemented; this is discussed in Section 2.
Another way to obtain most of the computational

benefits of an extended format is to use the next
wider basic format. Indeed, quad is included in this
document as an alternative for those not wishing to
implement double-extended. In most implementa-
tions extended will be as fast as the basic format it
supports, as compared to a factor 2 or 4 loss in speed
suffered by the next wider basic format, if im-
plemented.

1.4 Arithmetic operations. The standard provides a
notably complete set of arithmetic operations (see
Section 1.1) in an attempt to facilitate program por-
tability by guaranteeing that results obtained using
standard arithmetic may be reproduced on different
computer systems, down to the lastbit ifno extended
format is used. SQUARE ROOT and REMAINDER
are included as primitive operations because they ap-
pear so often, for example in matrix calculations and
range reduction. REMAINDER is preferable to the
MODULO function because REMAINDER is com-
puted without rounding error. Consider, for example

0.01 MOD (-95) vs 0.01 REM (-95)
on a 2-digit machine. MODULO yields the result
round (-94.99) = -95 for a complete loss of ac-
curacy, whileREMAINDER yields the correctresult
0.01. The standard's specification of minimal re-
quirements for binary-decimal conversions is an at-
tempt to allow comparison of data from different
systems at the decimal output level rather than via
hexadecimal dumps.

All operations except conversions between dif-
ferent data formats are presumed to deliver their
results to destinations having no less exponent range
than their input operands. This constraint avoids un-
necessary complexity in the implementation and
simplifies the responses to Over/Underflow. The rare
operation

double * double single
is required to function exactly as

double * double -- double
MOVE (round) double -- single,

to assure identical results in all sequences of opera-
tions performed in the basic formats only,
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Rather than prohibit mixed-format operations, the
standard is designed to encourage the provision of
some such operations. The sequence

(single * single -- double) + double double
ought to be available without the overhead of pad-
ding the single operands to double.

1.5 Accuracy and rounding. If the infinite precision
result of an arithmetic operation is exactly represen-
table within the exponent range and precision
specified for the destination, then it must be given ex-
actly. Otherwise the result must be rounded as
follows. Let Z be the infinitely precise result of an
arithmetic operation, bracketed most closely by Zl
and Z2, numbers representable exactly in the preci-
sion of the destination, but whose exponents may be
out of range. That is, Zl < Z < Z2, barely.
Round to Nearest(Z) = Unbiased Round (Z)
= the nearer of Zl and Z2 to Z; in case of a tie
choose the one of Zl and Z2 whose least signifi-
cant bit is 0.

Round toward Zero(Z) = Chop(Z) = smaller of
Zl and Z2 in magnitude.

Round toward +oo(Z) = Z2.
Round toward -oo(Z) = Zl.

The latter two modes, the "directed roundings," are
intended to support interval arithmetic. Round
toward Zero is useful in controlling conversions to in-
tegers in accordance with conventions embedded in
programming languages like Fortran.
An implementation of the standard may support

either Round to Nearest only, with Round toward
Zero available for Round to Integer, or all four round-
ing modes. Round to Nearest shall be the default
mode for all operations. Calculation of Round to
Nearest requires the so-called sticky bit, as shown in
Section 2. Once the sticky bit is implemented, the
directed roundings may be supplied at very little ex-
tra cost, the bulk of which lies in the mechanism, say
mode bits or extra opcodes for exercising the choice of
rounding mode. While the standard leaves this
mechanism up to the implementor, the mode bits are
usually preferable. For example, an interval
arithmetic computation of upper and lower bounds,
performed by executing the same instructions round-
ing up during one pass and down the next, is greatly
expedited if flipping a pair of bits changes rounding
modes.
In a system which delivers all floating-point results

except format conversions in the widest format sup-
ported, the user needs control over the precision to
which a result is rounded. Such a system would en-
courage the evaluation of long expressions in the
widest available format, with just one serious round-
ing error at the end when the expression's value is
stored in a narrower destination. But the standard's
specifications for roundoff control are burdened by
the current programming languages which prohibit
mixed-precision calculation, andby the need to mimic
systems not providing an extended format. Round-
ing precision control is specified at the end of Section
2.14.

1.6 Exceptions. Once the data formats and opera-
tions are determined, there remains the specification
of responses to exceptional conditions. The standard
classifies the exceptions as Invalid-Operation,
Underflow, Overflow, Division-by-Zero and Inexact-
Result. They are discussed in the following sections.
The default response to any exception is to delivera

specified result and proceed. However, an implemen-
tationmay provide optional traps to user software on
any of the exceptions. If available, the choice to trap
should be exercised at execution time via a trap-
enable bit.
Associated with each of the exceptions is a

"sticky" flagwhich is guaranteed to be set on each oc-
currence of the corresponding exception when there
is no trap. The flags may be tested by a program and
may be cleared only by the user's program. When the
end of a job is obviously at hand, a humane operating
system may draw the user's attention to flags still
set.
Since the sticky flags need not be set when a trap is

to be taken, an implementation may use them to in-
dicate which exceptions have just occurred. A trap
handler could determine which exception(s) arose on
the aborted operation by checking which have both
their sticky and trap-enable flags set, and would then
clear those flags at the end of the operation.
To deal effectively with traps, programmers need

certain vital information, such as what exceptions oc-
curred, where in the program, and what the operation
and operands were. In response, the programmer will
normally either depart from the offending block of
code, fix up the aberrant result andresume execution,
or reinterpret the aberrant operands and recompute
the result. The trap handler might be passed informa-
tion by value, with the option to "return" a result to
be inserted to the offending operation's destination.
One might dispense with some of the above informa-
tion, for example when the correct result is available
in encoded form as in Over/Underflow.

1.7 Invalid-Operation. The Invalid-Operation excep-
tion arises in a variety of arithmetic operations on er-
rors not frequent or important enough to merit their
own fault condition. Some samples of Invalid-
Operations are:

(A) VW5
(B) (+X0) - (+X0) (See Section 1.8.)
(C) 0*00.
One class of reserved operands, the Not-a-Number

symbols, or NaNs, are specified as the default results
of Invalid-Operations. In single, double, and quad
formats, with the format

|IS | E F

NaNs are characterized by
S = sign bit (which may be irrelevant)
E =111... .11
F #0.

In extended format NaNs have the most positive ex-
ponent. The leading significant bit in extended and
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quad may be 0 or 1. The sign bit S participates in the
obvious way in the execution of statements like
X=-YandZ=X-Y=X+(-Y) without loss of infor-
mation in the event that Y is a NaN with a numerical
connotation.
The nonzero fraction field F of a NaN will contain

system-dependent information. For example:
(A) A distinguished class of NaNs may be used by

an operating system to initialize storage. The
fraction of such a NaN may be a name or a
pointer to the region where the NaN is stored.

(B) A NaN generated by an invalid arithmetic
operation on numeric data, for example 0 *'o0,
may be a pointer to the offending line or block of
code.

(C) When complex arithmetic is implemented, it is
often useful to think of oo as line rather than a
point in the projective plane. A distinguished
class of NaNs may be used in pairs to provide
the relative sizes and signs of the real and im-
aginary parts of numbers tending to oo along a
fixed ray emanating from the origin.

(D) Sometimes an operation could generate a result
acceptable but for its inability to pack that
result correctly into the intended destination
(see the discussion of Over/Underflows). In
such a case, a NaN could be supplied, with a
fraction pointing to an extended field or a heap
where the correct result may be found.

(E) Sometimes a subroutine may encounter data
for which only a partial result can be delivered
in the time available. The rest of the result can
be replaced by NaNs pointing to a piece of the
program which will resume execution of that
subroutine only if that undelivered portion of
the result is really needed.

(F) List-oriented systems like LISPmay use single
format NaNs to point to double numerical data.

As the list above shows, there are two distinct
types of NaNs. The Nontrapping NaNs, as in (A) and
(B), propagate through arithmetic operations
without precipitating exceptions. If two such NaNs
are picked up as operands, the result is one of -the
operands, according to a system-dependent
precedence rule. On the other hand, the Trapping
NaNs would be useful in situations (C) through (F),
where an Invalid-Operation trap to user software is
required to perform arithmetic on the special
operands; when the trap is disabled, a Nontrapping
NaN results. The two types of NaNs might be
distinguished by the leading bits of their fractions.

1.8 Underflow. Because of the care taken in the treat-
ment of Underflows, the range of normalized
numbers in single, double, and quad formats has been
chosen to diminish slightly the risk of Overflow com-
pared with the risk of Underflow. This was done by
picking the exponent bias and alignment of the
binary point in the significant digit field in such away
that the product of the largest and smallest positive

normalized numbers is roughly 4 in each of the basic
formats.
Underflow occurs if the exponent of a result, tested

before or after rounding at the implementor's option,
lies below the exponent range of the destination field,
or if the rounded extended or quad result of a
MULTIPLY or DIVIDE with nonzero, finite
operands is normal zero. Note that a product or quo-
tient of grossly unnormalized numbers may have a
zero significant digit field; the test above prohibits
such a result from masquerading as a normal zero
when the operand exponents fortuitously add to the
format's minimum.
Because of the restrictions on arithmetic opera-

tions presumed in Section 1.4, the exponent can be
out of range by at most a factor of 2, except for the
MOVE instruction which is discussed in Section 2. If
the Underflow trap is enabled, the exponent is
wrapped around into the desired range with a bias ad-
just specified in Section 2, and the resulting value is
delivered to the trap handler. The exponent wrap-
around is chosen so that theresult, while related in a
simple way to the Underflowed value, lies somewhere
in the middle of the numerical range of representable
numbers. This diminishes the risk that a computa-
tional response (like scaling) to Underflow will en-
counter almost immediately a rash of consequent
Overflows. The analogous statement holds for
Overflows.

If the Underflow trap is disabled, the result is
denormalized by right-shifting its significant digit
field while the exponent is incremented until it
reaches that of the smallest normalized number
representable in the destination. Then the result is
rounded to fit into the destination.
Note that denormalization is performed before

rounding, to avoid double-rounding problems. If the
Underflow test is made on a rounded result, that
result must be "unrounded" before undergoing
denormalization. The difference between testing
Underflow before and after rounding is that the
Underflow threshold (i.e. the largest infinite preci-
sion number that Underflows) is the higher in the lat-
ter case by one quarter'ofa unit in the last place ofthe
smallest normalized number; however, both im-
plementations yield exactly the same numerical
values.
In terms of the format

| S E F

a nonzero denormalized single numberX (see Section
2 for the other formats) is encoded as
S = sign bit
E =0
F = X's 23 significant bits (at least one of which

must be nonzero) to the right of the binary point.
X is reconstructed via the formula

X =(-1)s*2-126*(0 F)
observing that E is not the true biased exponent in
single format. Comparing this formula with its
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analog for normalized numbers, one sees that, when
unpacking a denormalized number, the 1-bit that
would have gone to the leading bit of the significant
digit field for a normalized number is instead added
into the unbiased exponent E -127 + 1.
The denormalized numbers and signed zeros are

the reserved operands corresponding to a biased ex-
ponent of zero. The values ±0 are obtained just when
F=0 above. Zero may result from an Underflow,
depending on the rounding mode, when the
Underflow is so severe that all nonzero bits are
shifted out of the significant digit field.

1.9 Overflow. If the exponent of a rounded result of
an arithmetic operation overflows the range of the
destination, then the Overflow exception arises, ex-
cept when Invalid-Operation intervenes because a
single or double result is not normalized. If a trap is to
be taken, then the exponent is wrapped around as
discussed in Underflow (Section 1.8), except that the
bias adjust is subtracted rather than added.

If no trap is to be taken, then the result depends on
the rounding mode and the sign of the result, as
discussed in Section 2. One possible result is oo, which
in single, double, and quad formats with the bit pat-
tern

|IS| E |F l

is encoded as
S = sign bit
E =111. 11
F =0.

In the extended formats E = maximal-value and F =
0. The explicit leading bit L in extended and quad
may be 0 or 1.
The M's are given two interpretations. In Affine

mode
- <{real numbers} < +oo,

which is appropriate for most engineering calcula-
tions involving exponentials or disparate time con-
stants or 's generated by Overflows. The sign of oo is
ignored in Projective mode, which is useful for real
and complex rational arithmetic, for continued frac-
tions, and for oo's generated by division by zeros not
generated by Underflows. Systems shall provide an
Affine/Projective mode bit so that the choice can be
made under program control. Projective mode is the
default because it is less likely to be abused unwit-
tingly.

1.10 Division-by-Zero. The Division-by-Zero excep-
tion arises in a division operation when the divisor is
normal zero and the dividend is a finite nonzero
number. The default result is X0 with sign according
to convention.

1.11 Inexact-Result. The Inexact-Result exception
arises when a roundoff error is committed in an
arithmetic operation. It is intended for essentially in-
teger 'calculation as in Cobol and to facilitate

multiple-precision calculation. The default result is
the correctly rounded number.

1.12 Denormalized and unnormalized numbers. In
this document an unnormalized number is one whose
leading significant bit, whether implicit or explicit, is
zero. Denormalized numbers, nonzero unnormalized
numbers in a given format whose exponents are the
format's minimum, were introduced as the default
results of Underflows. They are designed not somuch
to extend the exponent range, but rather to allow fur-
ther computation with some sacrifice of precision in
order to defer as long as possible the need to decide
whether the Underflow will have significant conse-
quences.
While in extended and quad formats, with their ex-

plicit leading bits, unnormalized numbers may range
over the entire exponent range, the only unnormal-
ized numbers that may be represented in single and
double formats are denormalized.

Section 2 specifies the results of arithmetic opera-
tions on unnormalized operands; in each case the
algorithms are essentially the same as for normalized
operands. The only unnormalized result possible with
normalized operands is a denormalized number on
Underflow.
The usual mode of arithmetic on unnormalized

numbers, which may be- called Warning mode,
recognizes operands' unnormalized character. But
the standard allows an optional Normalizing mode in
which all results are computed as though all denor-
malized operands had first been normalized. In a
system that offers both, Warning mode shall be the
default, and selection of modes shall be exercised via
a single-mode bit accessible to programmers.
Normalizing mode precludes both the creation of

any unnormalized numbers other than denormalized
numbers, and Invalid-Operations due to the inability
to store an unnormalized result in a single or double
destination. It might be used by a programmer who
has given some thought to Underflow, since, in most
cases, the error due to denormalization on Underflow
is no worse than that due to roundoff. Normalizing
mode sacrifices the diagnostic capability of the un-
normalized numbers for the predictability of nor-
malized arithmetic. But if unexpected unnormalized
(but not denormalized) operands are somehow picked
up in that mode, they are operated on as in Warning
mode.
Because it is so often desired, Normalizing mode is

recommended for all systems, especially those
without an extended format to hold unnormalized in-
termediates. In fact, the Normalizing mode is op-
tional primarily to free the high-performance pipe-
lined array processors from the extra normalizing
step at the start of each operation; such systems will
probably'compute their intermediates in extended.
Another way to perform unnormalized arithmetic

in extended format is according to the rules of
significance arithmetic. This would be regarded as an
(expensive) enhancement of the standard. If quad is
implemented, then unnormalized arithmetic should
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be performed as significance arithmetic to take ad-
vantage of the extravagant word size.
As mentioned in the discussion of the extended for-

mats, the standard does not exactly specify the inter-
pretation of the nonzero numbers' whose exponents
are the format's minimum. One natural implementa-
tion simply-extends the exponent range one unit, in-
terpreting a number with the format's smallest expo-
nent as it would any other nonzero number. A prob-
lem arises since normal 0 can be the unexceptional
product or quotient ofgrossly unnormalized or denor-
malized numbers. To protect against this anomalous
situation, the standard specifies that such a product
or quotient be marked as an Underflow. The extra
test for normal zero is required after a product or quo-
tient of nonzero numbers.
An alternative encoding of denormalized numbers

in extended and quad formats uses a redundant expo-
nent to permit numbers denormalized by Underflow
to be distinguished from unnormalized numbers at
the bottom of the exponent range which are the
results of operations on unnormalized operands. In a
scheme with biased exponent, with the notation in-
troduced earlier,

(A) The nonzero normalized numbers with E=0
have exactly the same numeric connotation as
their counterparts with E =1.

(B) The nonzero nonnormalized numbers with
E=0 and F#0 have the same numeric connota-
tion as the corresponding numbers with E= 1.
Those with E=0 are denormalized while those
with E= 1 are unnormalized.

(C) The numbers with E=L=F=0 are the signed
normal zeros. The numbers with E>1 and
L=F=0 are unnormal zeros.

In this representation normal zero can never be the
product or quotient of nonzero operands unless expo-
nent Underflow occurs (i.e., biased exponent less than
1), simplifying the test for Underflow. Also, in
systems which implement Normalizing mode, there
is a distinction between denormalized numbers and
unnormalized numbers at thebottom ofthe exponent
range. Another advantage, for those who implement
the standard in hardware that traps to system soft-
ware in all exceptional circumstances, is that
E =maximal-value and E =minimal-value are the
conditions for a hardware trap on "exceptional
operand."

1.13 Hardware vs user traps. The standard specifies
the trap options for exceptions independently of
whether the implementation is in hardware, soft-
ware, or a combination of the two. These are system
traps to software that the user has either written or
invoked from a system library. They are to be dis-
tinguished from hardware traps in the arithmetic
unit.
One possible hardware/software implementation

would provide a hardware trap to system software on
every Over/Underflow. The system software would
then test the trap option flag and either deliver the

specified result and proceed, or trap to user software.
In this case the exceptions' sticky flags and trap-
enable bits could be in software. It is important to
note that if the hardware trap provided the correctly
rounded result with an extended exponent, then the
system software would require sufficient informa-
tion to "unround" the number in case a denormalized
result is to be delivered on Underflow; otherwise a
second rounding could occur during denormalization,
in violation of the standard.
The Invalid-Operation and Division-by-Zero excep-

tions could be handled by similar hardware/software
combinations.
Inexact-Result requires more care. Because this ex-

ception will arise (and be ignored) so frequently in
floating-point computations, it is impractical to have
a hardware trap executed on every occurrence. If the
Inexact-Result exception is to be handled by a hard-
ware trap and system software, then that trap should
be maskable. In one possible implementation:

(1) The trap would be masked off until...
(2) enabled by the library routine invoked by the

user to clear the Inexact-Result sticky flag or to
enable the user trap, and ...

(3) on the first occurrence of a rounding error, the
hardware trap would set the sticky flag. The
user trap would be invoked if enabled; other-
wise the system software would disable the
hardware trap and resume execution, leaving
the sticky flag as an indication of a rounding er-
ror.-

A possible hardware trap on denormalized operand
was mentioned at the end of the last section. A
system implementing the Normalizing mode of com-
putation would have software test the Warning/Nor-
malizing mode bit and normalize the denormalized
operand if necessary, handling the details of extend-
ed exponent range required to represent the operand
as normalized.

2.0 Specifications for a conforming
implementation of standard arithmetic

2.1 Floating-point formats. Single, double, and quad
are the basic floating-point formats. A standard
system shall provide single only, both single anddou-
ble, or all three basic formats. In addition, either of
the first two systems above may provide the extend-
ed format corresponding to the wider basic format
supported. The formats are described in Tables 1 and
2.

2.2 Data types. This standard defines the following
floating-point data types: normalized numbers,
denormalized numbers, unnormalized numbers
(available only in extended and quad), the normal
zeros (±0), ±+, and the NaNs. They are described in
detail in Tables 1 and 2.
A standard system must produce denormalized

numbers as the default response to Underflow; un-
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normalized numbers are their descendants in extend-
ed or quad. A system may optionally allow users to
normalize all denormalized numbers when they ap-
pear as input operands in arithmetic operations. This
shall be called Normalizing mode in contrast to the
default, Warning mode. The choice of Normaliz-
ing/Warning modes shall be made via a single bit ac-
cessible to users.
Signed oo's are produced'as the default response to

Division-by-Zero and certain Overflows. Systems
shall provide 00 arithmetic as specified. Users must
be able to choose, via a single-mode bit, whether ± X
will be interpreted in the Affine or Projective closures
of the real numbers. The sign of oo is respected in Af-
fine mode and ignored in Projective, the default.
NaNs are symbols which may or may not have a

numeric connotation. Nontrapping NaNs are intend-
ed to propagate diagnostic information through
subsequent arithmetic operations without triggering
further exceptions. Trapping NaNs, on the other
hand, shall precipitate the Invalid-Operation excep-
tion when picked up as operands for an arithmetic
operation. Systems shall support both types of
NaNs. In the event that two Nontrapping NaNs oc-
cur as operands in an arithmetic operation, the result
is one of the operands, determined by a system-
dependent precedence rule.

2.3 Arithmetic operations. An implementation of
this standard must at least provide:

(A) ADD, SUBTRACT, MULTIPLY, DIVIDE,
andREMAINDER for any two operands ofthe
same format, for each supported format, with
the destination having no less exponent range
than the operands.

(B) COMPARE and MOVE for operands of any,
perhaps different, supported formats.

(C) ROUND-TO-INTEGER and SQUARE ROOT
for operands of all supported formats, with the
result having no less exponent range than the
input operands. In the former operation, round-
ing shall be to the nearest integer or by trunca-
tion toward zero, at the user's'option.

(D) Conversions between floating-point integers in
all supported formats and binary integers in
the host processor.

(E) Binary-decimal conversions to and from all
supported basic formats. Section 2.21
describes one possible implementation.

2.4 Exceptions. One or more of five exceptional con-
ditions may arise during an arithmetic operation:
Overflow, Underflow, Division-by-Zero, Invalid-
Operation, and Inexact-Result.
The default response to an exception is to deliver a

specified result and proceed, though a system may of-
fer traps to user software for any of the exceptions.
These traps shall be enabled via bits accessible to pro-
grammers.
A system providing a trap on an exceptional condi-

tion should give sufficient information to allow cor-

rection of the fault and allow processing to coxitinue
at the point of the error or elsewhere, at'the option of
the trap handler. The correct resultmaybe encoded in
the destination's format (or even in the destination)
or in a heap pointed to by a NaN. On the other hand, if
no numeric result can be given, the opcode and aber-
rant operands must be provided; the trap handler
should be able to return a result to be delivered to the
destination.
Associated with each of the exceptions is a sticky

flag which shall be set on the occurrence of the cor-
responding exception whenno trap is to be taken. The
flags may be sensed and changed by user programs,
and remain set until cleared by the user.

2.5 Specifications for the arithmetic operations. For
definiteness the algorithms below specify one con-
forming implementation. Single, double, and double-
extended formats are implemented; the exception
flags are set on every occurrence ofthe corresponding
exception; the extended exponent is biased by 16383.
There are many alternative conforming implementa-
tions. Those arithmetic operations, except Decimal
to Binary conversion, which deliver floating-point
results rather than strings or binary integers are
broken into three steps:

(0) If either operand is a Trapping NaN, then
signal Invalid-Operation and proceed to Step 2.
Otherwise, if the Normalize bit is set, then nor-
malize any denormalized operands.

(1) Compute preliminary result Z and, if numeric,
round it to the required precision and check for
Invalid/Over/Underflow violations. This step
is peculiar to the specific operation.

(2) Set exception flags, invoke the trap handler if
required, and deliver the result Z to its destina-
tion. The second step is the same for all opera-
tions except REMAINDER and MOVE; the
minor differences are noted.

The following table is used in the specification of
Step 1 of the operations with two input operands. It
singles out the cases involving special operands.

x

y

X op Y ±O W ±+o NaN
±O a b c Y

d e f Y
+00 9 h Y
NaN X X X M

W is any finite number, possibly unnormalized but
not normal zero. While X and Y refer to the input
operands, the entry M indicates that the system's
precedence rule is to be applied to the two Nontrap-
ping NaNs.

Preliminary numeric results may be viewed as:

sgn -| exp V I N.| L I G I R IS
where V is the overflow bit for the significant digit
field, N and L are the most and least significant bits,
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G and R are the two bits beyond L, and S, the sticky
bit, is the logical OR of all bits thereafter.

2.6 ADD/SUBTRACT. For subtraction, X-Y is
defined as X+(-Y).

a: Z is +0 in rounding modes RN, RZ, RP, or if
both operands are +0; Z is -0 in modeRM or
if both operands are -0.

c,f: Z=Y.
g,h: Z=X.
b,d,e: (Note that in cases b and d, a narrow rounding

precision may cause the result to differ from
the nonzero input operand.) Compute:

(1) Align the binary points of X and Y by un-
normalizing the operand with the smaller
exponent until the exponents are equal.
Note

I
whether either of the resulting

significands is normalized for (3) below.
Add the operands.

(2) Addition of magnitudes: If V=1, then
right-shift one bit and increment exponent.
During the shift R is ORed into S.

(3) Subtraction of magnitudes:
(a) If all bits of the unrounded significant

digit field are zero: Set the sign to "+"
in rounding modes RN, RZ, RP, and set
the sign to "-" in mode RM. Then, if
either operand was normalized after
binary point alignment in (1), the expo-
nent is set to its minimum value, i.e.,
the result is true zero.

(b) Otherwise: If, after binary point align-
ment in (1), neither operand was nor-
malized, then skip to (4). Otherwise,
normalize the result, i.e., left-shift the
significand while decrementing the ex-
ponent until N= 1. S need not par-
ticipate in the left shifts; zero or S may
be shifted into R from the right.

(4) Check Underflow, round, andcheck Invalid
and Overflow.

i: In Affine mode (+oo) + (+X0) -X (+00) and (-oo) +
(-6o) (-o). In Affine mode on (+oo) + (-oo)
and (-o) + (+oo), and in all cases in the Projec-
tive mode, signal Invalid-Operation, and if a
result must be delivered, set Z to NaN.

2.7 MULTIPLY.
a,b,d: Z=0 with sign.
c,g: Signal Invalid-Operation. If a result must be

delivered, set Z to NaN.
e: If either operand is an unnormal zero, proceed as

in c; otherwise, compute:
(1) Generate. sign and exponent according to

convention. Multiply the significands.
(2) If V=l then right-shift the significand one

bit and increment the exponent.

(3) Check Underflow, round, and check Invalid
and Overflow.

f,h,i: Z=oo with sign equal to the Exclusive-Or of
the operands' signs.

2.8 DIVIDE.
a,i: Signal Invalid-Operation and if a result must be

delivered, then set Z to NaN.
b,c,f: Z=0 with sign. Exception: if X is an unnor-

mal zero, proceed as in a.

d: Z=oo with sign. Signal Division-by-Zero.
Exception: ifX is an unnormal zero, proceed as
in a.

e: If Y is unnormalized, proceed as in a; other-
wise, compute:
(1) Generate sign and exponent according to

convention. Divide the significands.
(2) If N=0, then left-shift significand one bit

and decrement exponent. S need not par-
ticipate in the left shift; a zero or S may be
shifted into R from the right.

(3) Check Underflow, round, and check Invalid
and Overflow.

g,h: Z=oo with sign.

2.9 REMAINDER. Form the preliminary result Z =
remainder when X is divided by Y, with integer quo-
tient Q. Q does not participate in Step 2 of the opera-
tion unless an exception is raised there, in which case
if Z is set to NaN, then Q is assigned the same value.
The- sign of Q is the Exclusive-Or of the input
operands' signs. The standard does not require the
quotient Q.

a,d,g,h,i: Signal Invalid-Operation. If results must
be delivered, then set Z and Q to NaN.

b,c: If Y is unnormal zero, proceed as in a; olther-
wise Z=X and Q = 0.

e: If Y is unnormalized, proceed as in a. Otherwise,
normalize X and compute:
(1) Set Q to the integer nearest X/Y computed

to as many bits as necessary to round cor-
rectly; if X/Y lies halfway between two in-
tegers, set Q to the even one. If Q contains
more significant bits than its intended
destination (the number may be great if
X>>Y), then discard the excessive high-
order bits.

(2) Set Z to the remainder, X-(Q*Y). Nor-
malize Z, check Underflow, round, and
check Invalid and Overflow. There is no
rounding error if the destination precision
is no narrower than X's and Y's.

f: Q=Oand Z=X.

2.10 ROUND-TO-INTEGER. Set Z to X if X is ±0,
±00, or NaN; otherwise, compute Z: IfX's exponent is
so large that it has no (zero or nonzero) significant
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fraction bits, then set Z to X; else:
(1) Right-shift X's significand while incrementing

the exponent until no bits of the fractional part
of X lie within the rounding precision in effect.

(2) Round Z. The user must have the option of
rounding by truncation as well as to the nearest
integer.

(3) If all of the significant bits of Z are 0, then set Z
to normal zero with the sign of Z; otherwise,
normalize Z. S, whichwas set to zero after round-
ing in (2), need not participate in the left shifts
ofnormalization; zero or S is shifted intoR from
the right.

2.11 SQUARE ROOT. Z=VX. If X is ±0 or NaN,
then set Z to X. If X is unnormalized or -0, then
signal Invalid-Operation and if a result must be
delivered, set Z to NaN. If X is +0, then in Affine
mode set Z toX and in Projective mode proceed as for
-00

If X is positive, finite, and normalized, compute
Z=\/X to the number of bits required to get a correct-
ly rounded result, and round Z. Only two bits of Z
beyond its rounding precision are required, if that
precision is no narrower than the precision of X.

If X is negative, finite, and normalized, signal
Invalid-Operation. If a result must be delivered, setZ
to NaN.

2.12 MOVE. MOVE X Z (convert between dif-
ferent floating-point formats) is an operation whose
destination may have shorter range and precision
than its source operand, in which case it performs an
arithmetic operation. IfX is ±0, , or NaN, setZ to
X. Otherwise, check X for Underflow, round to the
precision of the destination, and check for Invalid
and Overflow.
On Over/Underflow with the corresponding trap

enabled, the exponent may be more than a factor of 2
(i.e., one bit) beyond the range of the destination, so
the exponent wrap-around scheme will not work. One
way to cope is to deliver to the trap handler the result
in the format of the source, or in the widest format
supported, but rounded to the precision of the
destination. Another way involves a heap onto which
is put the rounded value whose exponent lies beyond
the range of the intended destination; into the
destination would go a NaN pointing to that value in
the heap.

2.13 Detection of Underflow. If the exponent of the
nonzero preliminary result underflows the intended
destination, then signal Underflow and, if the
Underflow trap is disabled, denormalize it as follows.
Shift the significant digit field right while increment-
ing the exponent until it reaches its most negative
allowable value. During each right-shift the R bit is
ORed in to the S bit, itself not shifted. If the trap is
enabled then, except for the MOVE operation, the ex-
ponent is wrapped around as described under Bias
Adjust (Section 2.16).

Another instance of Underflow, tested after round-
ing, is a normal zero extended or quadproduct or quo-
tient ofoperands neither ofwhich is normal zero. This
special case is precluded by the redundant exponent
scheme discussed in Section 1.12.

2.14 R'ounding. Four rounding modes are described
by the standard:
RN - Round to Nearest
RZ - Round toward Zero
RM - Round toward -

RP - Round toward +o
An implementation of the standard may support
either RN only, with RZ for Round to Integer, or all
four rounding modes. RN shall be the default mode
for all arithmetic operations. Theroundingmodemay
be spec1fied by, say, preset mode bits, roundingmode
options in each instruction, or rounding instructions
which can follow the operation whose result is re-
rounded, but not double-rounded.
The preliminary result Z, to be rounded, may be

viewed as in Section 2.5. S, the sticky bit, assures a
result rounded as though first computed to infinite
precision. From Z determine Zl and Z2, the numbers
representable in the desired rounding precision that
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most closely bracket Z. Since Overflow is not checked
until after rounding, the exponent of Zl or Z2 or both
may be overflowed.

If Z1=Z=Z2, there is no rounding error and
RN(Z)=RZ(Z)=RP(Z)=RM(Z)=Z. Otherwise, signal
Inexact-Result, and
RN(Z)=the nearer of Z1 and Z2 to Z; in case of a tie
choose the one of Zl and Z2 whose least signifi-
cant bit is 0.

RZ(Z) the smaller of Zl and Z2 in magnitude.
RM(Z)= Zl.
RP(Z) = Z2.
When a system supports an extended format, it

must provide users with the option of rounding to a

shorter basic precision a result intended for a wider
extended destination. Also, when all operands in an
operation are of the same format, it shall be possible
to round the result to the precision of that format.
The specification of that option wir require at most
two bits ofinformation: one enables precision control;
one specifies whether rounding to single or double
precision, effective only when precision control is
enabled.

2.15 Detection of Invalid and Overflow. If an unnor-

malized, but not denormalized, number is destined
for a single or double destination, the Invalid-
Operation exception arises. Otherwise.

If Z's exponent overflows the intended destination,
then signal Overflow and, if the corresponding trap is
enabled, adjust the exponent bias as specified under
Bias Adjust (Section 2.16).
On Overflow with the trap disabled, signal Inexact-

Result. Then set Z too with the sign ofZ if the round-
ing mode is RN, RZ, RPand Zis positive, orRM andZ
is negative. Otherwise, if Z is normalized, set Z to the
largest normalized number representable in the
destination field, with the sign of Z; and if Z is not nor-

malized, simply set Z's exponent to that of the for-
mat's largest normalized number.

2.16 Bias Adjust. On Over/Underflow, with the cor-

responding trap enabled, the exponent of a rounded
result Z is wrapped around into the required range of
the destination. Compute A = 192 in single, 1536 in
double, 24576 in quad, and 3*2n-2 in extended, where
n is the number of bits in the exponent. On Overflow
subtractAfrom Z's exponent; on Underflow addA to
Z's exponent.
This scheme works only when the Over/Under-

flowed exponent exceeds its destination's range by a

factor no larger'than 2. The only exception in this im-
plementation is discussed under MOVE (Section
2.12).

2.17 Step 2 of arithmetic operations. Preliminary
result Z was developed in Step 1.

(1) In modes RP and RM, "undo" any Over/
Underflow signals whose traps were enabled.

(2) If the Invalid-Operation exception was sig-
naled, produce a diagnostic Nontrapping NaN
as the preliminary result Z.

(3) Set the sticky exception flags corresponding to
the exceptions signaled. Trap if any exception
has been signaled whose corresponding trap is
enabled, allowing Z to be modified before
delivery to the destination.

(4) Deliver Z to its destination.

2.18 FLOATING-TO-INTEGER. This instruction
converts a floating-point number X into a binary in-
teger of the host processor. If X is a NaN or 00, then
leave the destination unchanged and set the Invalid-
Operation bit, trapping if the corresponding trap is
enabled.
For finite X, replace X by ROUND-TO-INTE-

GER(X). Convert X to an integer in the desired for-
mat and write the result into the destination. If X
overflows the destination field, then truncate ex-

cessive high-order bits and signal Integer-Overflow
in the host processor, if it recognizes such an excep-

tion; otherwise, set the Invalid-Operation sticky flag
and trap if enabled.

2.19 INTEGER-TO-FLOATING. Map the binary in-

teger X in the host processor into a floating-point in-
teger. If X cannot be represented exactly, thenround
as described in Rounding and set the Inexact-Result
bit, trapping if the corresponding trap is enabled.

2.20 COMPARE. A floating-point comparison can

have precisely one of four possible results (condition
codes): <, =, >, and unordered. When the result is
reported as the affirmation or negation ofa predicate,
the following implications determine that response:

= affirms S, =, and >, and denies <, >, and un-

ordered.
<affirms < and S and denies =,' >, >, and un-

ordered.
> affirms > and > and denies <, S, =, and un-
ordered.

unordered affirms unordered and denies <, A, ,

>,and >.

When two values that are unordered are compared
via the predicates <, <, >, >, or their negations, then,
in addition to the response specified, the Invalid-
Operation flag is set and the trap invoked if enabled.
The following table specifies the compare opera-

tion. Unnormalized (and denormalized) operands are
treated as though first normalized.

COMPUTER

XvsY -°°Y Finite + 0 NaNAffine Affine Projective
-00

Affine = < < N/A a

Finite' b < a a

+00
+. > ~ ~~~>= N/A -aAffine

00
N/A a N/A aProjective

NaN a a a a a
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a: unordered.
b: The result is based on the result of X-Y. The

subtraction may not have to be carried out com-
pletely, and the possible Underflow and
Inexact-Result exceptions are suppressed.

2.'21 Radix conversion. A system must provide stan-
dard conversion to and from its basic formats. The
specifications are a compromise designed to ensure
that conversions are uniform and in errorby less than
one unit in the last place delivered, at a nearly
minimal cost. The scheme below meets the re-
quirements for single and double.
The particular decimal character code and format

are unspecified. The decimnal field widths are:
single: up to 2-digit exponent and up to 9
significant digits.
double: up to 3-digit exponent and up to 17
significant digits, with the option of using up to 19
digits in decimal-to-binary conversion.
Two functions perform conversions between

binary floating-point integers and character strings
consisting of a sign followed by one or more decimal
digits. BINSTR converts a binary floating-point in-
teger X, rounded to the nearest integer, to a signed
decimal string. STRBIN converts a signed decimal
stringwith atmost 9 digits insingle, and 19 indouble,
to a binary floating-point number X whose value is
that of the decimal integer the string represents.
The function logl0 is required and may be com-

puted from the formula
1ogl0(X) = log2 (X) * 1ogl0(2).

It need be computed only to the nearest integer for
this calculation. Log2(X) may be approximated by
X's unbiased exponent. Within the conversion pro-
cess, arithmetic must be done with at least 32 signifi-
cant bits for single and 64 bits for double.
Powers of 10 not exactly calculable in the stated

precision shall be procured from tables. The following
tables require minimal storage:

(A) Systems with single precision only: 1013 can be
represented exactly with 32 significant bits. To
cover the range up to 1038, a table with the
single entry 1026 suffices.

(B) Systems with both single and double precisions
only: 1027 can be represented exactly with 64
significant bits. To cover the range up to 10308,
a table of 104, 10108, and 10216 suffices.

Binary-floating-to-Decimal-floating. Given binary
floating-point number X and integer k with 14 k < 9
for single precision and 1< k< 17 for double precision,
compute signed decimal strings I and E such that I
has k significant digits and, interpreting I and E as
the integers they represent,

X=I * 1JE+1-k = sd.ddddddd * 10E
where s is the sign of X and the d's are the k decimal
digits of I.

()Special cases: IfeXis ,or NaN, dliver a
nondecimnal string, for example, + +, --

.

respectively. If X is zero, then return +0 or -0
as appropriate. Otherwise...

(2) Set X to its absolute value, saving its sign.
(3) IfX is normalized, compute U=log10(X); other-

wise let U=log10(smallest normalized number).
(4) Compute V=U + 1-k, rounded to an integer

in mode RZ.
(5) Compute W=X/1OV, rounded to an integer in

mode RN.
(6) Adjust W:

If W>1Ok+1, then increment V and go to (5).
If W=10k, then increment V, divide W by 10
(exactly), and go to (7).
If W410k-1-1 and X was normalized in (3),
then decrement V and go to (5).

(7) Return I=BINSTR(W with sign of X) and
E=BINSTR(V).

Decimal-floating-to-Binary-floating: The decimal
floating-point number X has the form X=sddddd.
DDDDDDD * 10E, where leading zeros are not
counted as significant digits. The following are given:

(A) signed decimal string E
(B) signed decimal string I= sdddddDDDDDDD
(C) integer P indicating how many digits of I are to

the right of the decimal point so that X can be
written

X=I*10-P*JOE.

(1) Compute U=STRBIN(I).
(2) Compute W=STRBIN(E).
(3) Compute result X =U*10W-P. U

Jerome T. Coonen is a graduate student
of mathematics at the University of
California at Berkeley. Since spring
1978 he has worked actively with the
IEEE subcommittee on a floating-
point standard for minicomputers and
microprocessors. His research in-
terests include computer arithmetic,
numerical analysis, and differential
equations. Coonen is a candidate for the

PhD degree; he received the BS and MS degrees from the
University of Illinois at Urbana.

January 1980 79


