

NOTICES

Destroy this report when it is no longer needed. DO NOT return it to the originator.

Additional copies of this report may be obtained from the National Technical Information
Service, U.S. Department of Commerce, 5285 Port Royal Road, Springfield, VA 22161.

The findings of this report are not to be construed as an official Department of the Army
position, unless so designated by other authorized documents.

The use of trade names or manufacturers’ names in this report does not constitute
indorsement of any commercial product.

REPORT DOCUMENTATION PAGE
Form Approved

Oh48 No. 0704-0188

pub,,< report,“0 burden ‘or th,s c~,,ect,m of ,nformaf,on 15 szsumatea 10 aierage I hour per resorre. lncluaing the tnme 10r rerlewing ~nstrucl~onr. searcnlng eli5tgng data v~urC=.
gather,“9 and ,+alnta,nlng the oata nee&yj, and completmg and rev~ewng the iollect~on of !nformatlon Send tommentr r

'3
aromg this burden eSt!mafe Or any other aW?CK of ths

CO,,eCt,On of ,n,ormat,on. ,nc,ud,ng wggest,onr for redwng this ouroen to &ashmgton “eaoouarter> Se’wcer. OlreRorate Or InfOrmatIOn OcwatlOnr and ReDOW ‘2’5 Je.ffe-'Jn
~~v,~~,~hwa~.~u,te,204.~ri,n~ton,vn 222~24302.andtothe0ff,ceof~anagementand~udget.~a~erw0r~RReducf~0n Pro~ecf(O)04-0188).Warhlngton. DC 20503

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

4. TITLE AND SUBTITLE

ntroductory User’s Guide to the ARL Supercomputer Facility at APG
PR: 4B592-3B2-H2

6. AUTHOR(S)
Zlau& J. Lapointe, Richard Angel& Lee Ann Bminard. Denice Brown,
rohn Cole, Monte Coleman, Phillip Dykstra, Carol A. Ellis, Gary Kuehl,
kborah L. Thompson, Kathy A. Burke,* and Jerry A. Clarke*

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS 8. PERFORMING ORGANIZATION
REPORT NUMBER

J.S. Army Research Laboratory
4T’lN AMSRL-CI-AC
4berdeen Proving Ground, MD 21005-5066

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS

J.S. Army Research Laboratory
4-l-l?+ AMSRL-OPCI-B (Tech Lib)
4berdeen Proving Ground, MD 21005-5066

11. SUPPLEMENTARY NOTES

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

ARL-TR-150

IKathy A. Burke and Jeny A. Clarke are employed by Computer Sciences Corporation, 3160 Fairview Park Dr., Falls
Shurch, VA 22042.

12a. DISTRIBUTION /AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

4pproved for public release; distribution is unlimited.

13. ABSTRACT (Mdxrmum 200 words)

The purpose of this report is to provide an introductory user’s guide to many of the computers, operating systems,
~tities, and software packages available at the U.S. Army Research Laboratory Supercomputer Facility located at Aberdeen
‘roving Ground, Maryland, together with the facility’s normal operating procedures.

14. SUBJECT TERMS 15. NUMBER OF PAGES

166
4RL Supercomputer Facility, computer user’s guide, computer programming, Fortran 16. PRICE CODE

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSlFlCATlON 20. LIMITATION OF ABSTRAC
OF REPORT OF THIS PAGE OF ABSTRACT

UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UL
Standard Form 298 (Rev 2-89)
Pr.xcr,bed b ANSI Std 239-18
298.102

Introductory User Guide - May 1993

Intentionally Left Blank

Army Research Laboratory Supercomputer Facility - APG, MD

Introductory User Guide - May 1993

TABLE OF CONTENTS

1. Introduction. _ , l-l

1.1
1.2
1.3
1.4
1.5

1.6
1.7
1.8
1.9
1.10
1.11
1.12

Historical Overview l-l

Computer Systems and Facilities l-2

Applications Software l-2

Eligibility for User Accounts l-2

Charges and Accounting l-2

1.5.1 ARL Mission Funded and AMC Tech Base Users l-3

1.5.2 Subscribers l-3

1.5.3 Monitoring Costs l-3

1.5.4 Billing Questions l-3

Classified Work l-4

Schedules l-4

Computer Security l-4

Responsibilities l-4

Computational Support Branch l-5

User Services l-5

Eastern Time l-6

2. ARLSCF Computer Access . . .
2.1 Requesting an Account . .
2.2 Methods of Access

2.2.1 INTERNET Access
2.2.2 The BRLnet . .

2.3 UNICOS Login Message . .
2.4 Logging Out
2.5 ARLSCF Points of Contact

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

.

. .

. .
.

. .

. .

. .

. .

.
. .

.
. .
. .
. .

. .

. .

. .

. .
.

. .

. .

. .

. .

.

.
,

. .

. .

. .

. .

. .

. 2-l
2-l
2-l
2-l

. 2-2

. 2-2

. 2-2

. 2-3

3. UNICOS - The Operating System 3-l

3.1 UNICOS Features 3-l

3.1.1 On-Line Help 3-l

3.1.2 Shells 3-l

3.1.2.1 Command Syntax 3-2

3.1.2.2 Metacharacters 3-2

3.1.2.3 A Few Useful Commands 3-2

3.1.3 Network Queuing System 3-3

3.1.4 File Migration 3-3

3.2 The File System 3-3

3.2.1 Types of Files 3-3

3.2.2 Directories and Paths 3-4

3.2.3 File Names 3-5

3.2.4 File Permissions 3-6

4. Xl1 Window System

4.1 ARLSCF X11 Programs

4.2 Compiling X11 Programs

4.3 ARLSCF Fortran Interface to X11

4.3.1 X11 Menus from Fortran

4.3.2 X11 Plotting from Fortran

4.3.3 Sample Fortran Program with X11 Interface .

4.4 X11 Interface to PVI

.

. .

.

.

. .

. .
.

.

. .

.

.
. .

. .

. .

. .

. .

.

. .

. 4-l

. 4-l
. . 4-2

. 4-2
. . 4-2
. . 4-2
. . 4-3
. 4-6

Army Research Laboratory Supercomputer Facility - APG, MD
. . .
111

Introductory User Guide - May 1993

5. On-Line Information
5.1 Manual Pages
5.2 Public Information Directory
5.3 explain
5.4 docview
5.5 Electronic Mail

5.5.1 Email on ARLSCF Non-Cray Machines .
5.5.2 Email on patton and bob
5.5.3 Email and File Transfers

. .

. .

.

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

.
. .

.

.

6. File Storage - On- and Off-Line

6.1 File Compression and Decompression

6.2 File Migration

6.2.1 Operation of System Initiated Migration

6.2.2 Pros of File Migration

6.2.3 Cons of File Migration
6.2.4 Current Status of the File Migration System

6.2.5 User Interface with the File Migration Facility

663: (uIutcmrnand /tmp Directories
.

6.5 Archives

6.5.1 t3480

6.5.2 tar and cpio
6.6 Tape Usage

6.7 Backups

7. File Transfers
7.1 Electronic Transfers

7.1.1 ftp
7.1.2 rep
7.1.3 kermit
7.1.4 Electronic mail

7.1.4.1 Email Transfers Not Involving ARLSCF Crays
7.1.4.2 Email Transfers Involving ARLSCF Crays . .

7.2 Manual Transfers
7.2.1 t3480
7.2.2 dd
7.2.3 cpio
7.2.4 tar
7.2.5 ansir

8. Batch Jobs . ,
8.1 NQS ,

8.1.1 The Queues _
8.1.1.1 Cray-2 Queues . . .
8.1.1.2 Cray X-MI’ Queues .

8.1.2 Submitting NQS Jobs
8.1.2.1 Options - Security .
8.1.2.2 Options

8.1.3 Monitoring NQS Jobs
8.1.4 Restrictions

8.2 at, batch, and cron
8.3 Executing in Background

. .
, .
* .

. .

. .

. .

. .

. .

. .
.

. .

. .

. .

. .

.

. .

. .

. .

. .

. .

. .

5-l
5-l
5-2
5-2
5-2
5-4
5-4
5-5
5-6

. . . 6-l
. . . . 6-l

. . . 6-l
. . . . 6-l

. . . 6-2
. . . . 6-2
. . . 6-2
. . . . 6-2
. . . . 6-3
. . . . 6-3
. . . 6-4
. . . 6-5
. . . 6-6
. . . . 6-6
. . . . 6-7

. 7-l

. 7-l
. . . 7-l

. 7-2

. 7-3

. 7-3
. 7-3

. 7-4

. 7-5

. 7-5

. 7-6

. 7-6

. 7-6

. 7-7

. .

. .

. .

. .

. .

. .

. .

.

.

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

8-l
8-l
8-l
8-2
8-2
8-2
8-3
8-3
8-3
8-4
8-4
8-4

iv Army Research Laboratory Supercomputer Facility - APG, MD

Introductory User Guide - May 1993

9. Text Editors
9.1 Regular Expressions
9.2 ed
9.3 sed
9.4 tr
9.5 jove
9.6 vi

. .
.

. .

. .

. .

. .

. .

. .

. .

. .

. .

.

. .

. .

. .

. .

.

. .

.
.

.

. .

. .

. .

. .

. .

. .

. .

. .

. .
.

. .

. .

. .

9-l
9-l
9-l
9-5
9-6
9-7

9-10

10. cf77 Compiling System
.. 10.1 cf77: Syntax and Options

ii;:

10.2 cf77: Environmental Variables 10-3

10.3 cf77: Default Files 10-4

10.4 cft77 Compiler 10-4

10.4.1 cft77: Syntax and Options 10-4

10.4.1.1 Arguments for -d and -e, Disable and Enable 10-6

10.4.1.2 Arguments for -0, Optimization 10-6

10.4.2 cft77: Compiler Directives - CDIR$ 10-7

10.4.2.1 Output Directives 10-7

10.4.2.2 Vectorization Directives 10-7

10.4.2.3 Scalar Optimization Directives 10-8

10.4.2.4 Storage Directives 10-8

10.4.2.5 Other Directives 10-8

10.5 segldr Loader 10-g

10.5.1 segldr: Syntax and Options lo-9

10.5.2 segldr: Loader Directives lo-11

10.5.3 segldr: Environment Variables 10-12

10.6 Some Nondefault Libraries 10-12

11. FortranI/O 11-l

11.1 Files 11-l

11.1.1 Formatted/Unformatted 11-l

11.1.2 Sequential/Direct 1 l-l

11.1.3 Records 11-2

11.1.4 Multifile Files 11-2

11.2 Files and Unit Identifiers 11-2

11.3 The OPEN Statement 11-3

11.4 The CLOSE Statement 11-4

11.5 Connections 11-5

11.6 Alternatives to OPEN and CLOSE Statements 11-6

11.7 Data Transfer 11-7

11.7.1 READ, WRITE, and PRINT Statements 11-7

11.7.2 ‘FORMATTED’ and ‘UNFORMATTED’ I/O 11-7

11.7.3 List-Directed I/O 11-8

11.7.4 ‘SEQUENTIAL’ and ‘DIRECT I/O 11-8

11.7.5 Carriage Control 11-10

11.7.6 Newline Suppression 11-10

11.7.7 NAMELIST I/O 11-10

11.7.8 BUFFER IN and BUFFER OUT Statements 11-10

11.7.9 READMS and WRITEMS Statements 11-12

11.8 Improving I/O Performance 11-12

11.9 Positioning the File 11-13

11.10 File Structures 11-13

11.11 Internal Files 11-14

Army Research Laboratory Supercomputer Facility - APG, MD V

Introductory User Guide - May 1993

12. Fortran Code Conversion 12-l
12.1 ANSI Standard Fortran Programs 12-1
12.2 Nonstandard Fortran Programs 12-2
12.3 Likely Trouble Areas 12-2

12.3.1 Programs from a COS Environment 12-2
12.3.2 Programs from an IBM Environment 12-2
12.3.3 Programs from a VAX Environment 12-2
12.3.4 Character Set 12-3
12.3.5 Lines 12-3
12.3.6 Tabs 12-3
12.3.7 Comments 12-3
12.3.8 D in column 1 12-4
12.3.9 Names 12-4
12.3.10 Local Variables: Retention of Value 12-4
12.3.11 Recursion 12-4
12.3.12 I/C 12-5

12.3.12.1 External Files 12-5
12.3.12.2 Recursion 12-5
12.3.12.3 List-Directed Output 12-5
12.3.12.4 NAMELIST I/O 12-6

12.3.13 Newline Suppression 12-6
12.3.14 INCLUDE Files 12-6
12.3.15 The PROGRAM Statement 12-6
12.3.16 Types 12-6

12.3.16.1 INTEGER
12.3.16.2 REAL, DOUBLE PRECISI&, &4PLEX,

12-7

DOUBLE COMPLEX 12-7
12.3.16.3 CHARACTER 12-7
12.3.16.4 Boolean Values 12-8

12.3.17 Type Conversion 12-8
12.3.18 Logical Expressions 12-8
12.3.19 Relational Expressions 12-8
12.3.20 IF Statements 12-9
12.3.21 DO Loops 12-9
12.3.22 Array Operations 12-9
12.3.23 Masking, Shifting, and Bit Manipulation 12-10

12.4 Useful Utilities 12-10
12.4.1 Code Checking 12-10
12.4.2 TIDYing 12-10
12.4.3 fsplit 12-11
12.4.4 flint 12-12

13. Interlanguage Communication
13.1 Fortran and C

13.1.1 Obscure Restriction
13.1.2 Invoking Subprograms

13.1.2.1 Names
13.1.2.2 Arguments

13.1.3 Data Types
13.1.3.1 Correspondence of Types
13.1.3.2 Fully Compatible
13.1.3.3 Almost Fully Compatible - Double Precision .
13.1.3.4 Almost Fully Compatible - Pointers
13.1.3.5 Convertible - Logical Values
13.1.3.6 Convertible - Character Values

13.1.4 Arrays.

. .

. .

. .

. .

. .

. .

. .

. .

. .

.

.

.

. .

. .

. .

. .

. .

. .

. .

.

. . 13-1

. . 13-1

. . 13-1

. . 13-2

. . 13-2

. . 13-3

. . 13-3
. 13-3

. . 13-3
. 13-4
. 13-4

. . 13-4
13-4

. 13-9

vi Army Research Laboratory Supercomputer Facility - APG, MD

Introductory User Guide - May 1993

13.1.5 Fortran COMMON and C external Variables 13-10

14. Debugging Tools 14-1

14.1 dbx 14-l

14.2 cdbx 14-1

14.2.1 Syntax and Options 14-l

14.2.2 Commands 14-3

14.3 debug 14-6

14.4 symdump 14-6

14.5 adb 14-6

14.6 lint 14-6

14.7 flint ~ 14-6

.5. Optimizing Cray Programs - Preprocessors 15-l

15.1 Analyzing a Program and Its Performance 15-1

15.1.1 Analyzing Fortran Source Code - ftref 15-l

15.1.2 Tracing and Timing Programs - Flowtrace 15-l

15.1.2.1 The FLOWMARK Subroutine 15-2

15.1.2.2 The SETPLLMQ Subroutine 15-2

15.1.3 Timing A Program 15-3

15.1.3.1 Profiling 15-3

15.1.3.2 time 15-3

15.1.4 Monitoring Hardware Performance 15-3

15.1.4.1 Hardware Performance by Program - hpm 15-4

15.1.4.2 Machine Performance by Program Unit - Perftrace 15-4

15.2 Vectorization - fpp 15-4

15.2.1 General Requirements for Vectorization 15-5

15.2.1.1 Unvectorizable Code 15-6

15.2.1.2 Vector Dependencies 15-6

15.2.1.3 Loops Containing IFS 15-7

15.2.1.4 Vectorizable Expressions and Statements 15-7

15.2.2 Some Other Considerations 15-7

15.2.2.1 Vectors 15-7

15.2.2.2 The Stride 15-7

15.2.2.3 Memory Contention 15-7

15.2.3 User Interaction with Vectorization 15-8
15.2.3.1 fpp Options 15-8
15.2.3.2 fpp Directives 15-9

15.2.3.3 cft77 Options 15-10

15.2.3.4 cft77 Directives 15-10

15.2.4 Another Capability - TIDYing 15-11

15.3 Multitasking 15-12

15.3.1 Macrotasking 15-12

15.3.2 Microtasking 15-13

15.3.3 Autotasking - fmp 15-14

15.3.4 User Interaction with Autotasking 15-14
15.3.5 Some Useful Utilities 15-15

16. Applications Software 16-l

16.1 The IMSL Library, Edition 10.0 16-l

16.2 The IMSL Library, Edition 9.2 16-2

16.3 LINDO - Linear, INteractive, Discrete Optimizer 16-2

16.4 PVI Graphics 16-2

16.4.1 Fortran Callable Subroutines 16-3
16.4.1.1 DI-3000 16-3

16.4.1.2 Grafmaker and Grafeasy 16-3

Army Research Laboratory Supercomputer Facility - APG, MD vii

Introductory User Guide - May 1993

17.

16.4.1.3 DI-Textpro 16-4
16.4.1.4 Contouring 16-4
16.4.1.5 GK-2000 16-4

16.4.2 PVI Utilization 16-4
16.4.2.1 Environment Variables 16-4
16.4.2.2 Compiling and Loading PVI Programs 16-5

16.4.3 Interactive Graphics Applications 16-5
16.4.3.1 PicSure/PIus 16-5
16.4.3.2 Using PicSure 16-6
16.4.3.3 Metafile/CGM Translator 16-6
16.4.3.4 Using Metafile/CGM Translator 16-6

16.5 CA-DISSPLA 11.0 Graphics Library 16-7
16.6 CA-DISSPLA 10.0 Graphics Library 16-7
16.7 MPGS 16-8
16.8 BRL-CAD 16-8
16.9 BRLLIB 16-8
16.10 MR - Stepwise Multiple Regression 16-8
16.11 SIMSCRIPT II.5 16-9
16.12 LQGALPHA16-10
16.13 PROLOG 16-10
16.14 SCIPORT16-11
16.15 ABAQUS16-12
16.16 MSC/NASTRAN 16-12
16.17 MSC/DYNA 16-13
16.18 MS’JPISCES 16-13
16.19 MSC/DYTRAN 16-14

Scientific Visualization
17.1 Introduction
17.2 Resources
17.3 Hardware
17.4 Software

17.4.1 MPGS - MultiPurpose Graphics System
17.4.2 BRL-CAD
17.4.3 Wavefront: Advanced Visualizer
17.4.4 Wavefront: Data Visualizer
17.4.5 Precision Visuals: PV-Wave
17.4.6 BRL-ShAYD
17.4.7 New Software

. .

. .

. .

. .

.

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

17-l
17-l
17-l
17-2
17-2
17-2
17-3
17-3
17-4
17-4
17-4
17-5

18. References . , 18-l

Appendix A - FY93 Charges A-l
A.1 Hourly Usage A-3
A.2 Subscriptions A-3
A.3 Dedicated Time A-3
A.4 Billing Questions A-3

Appendix B - Points of Contact , B-l
B.l Requests for Accounts . . _ _ B-3
B.2 Points of Contact B-3

List of Abbreviations _ . Abbreviations-l

Distribution List . Distribution-l

. . .
Vlll Army Research Laboratory Supercomputer Facility - APG, MD

Introductory User Guide - May 1993

LIST OF FIGURES

Figure 2.1

Figure 4.1

Figure 5.1
Figure 5.2

Figure 5.3

Figure 5.4

Figure 5.5

Figure 7.1
Figure 7.2
Figure 7.3

Figure 7.4

Figure 9.1

Figure 9.2

Figure 9.3
Figure 9.4

Figure 9.5

Figure 9.6

Figure 11.1

Figure 11.2
Figure 11.3

Figure 12.1
Figure 13.1
Figure 13.2

Figure 15.1

TELNET Access to the ARLSCF Cray X-MP/48

Fortran Program Producing X Window Graphical Output ...

Extract of man jove Output

Sample explain Session

Sample docview Session

Sending a Message to support

An Invocation of msg

ftp File Transfer

ftp Help Screen

sending a Message

Extracting Files from Tape
Some Regular Expressions with Matching Strings

An ed Demonstration

Noninteractive Use of ed

Useofsed.

jove Commands and Cray Default Bindings

vi Commands

I/O with the Four Combinations of FORM and ACCESS Values
NAMELIST I/O , . . .
BUFFER IN and BUFFER OUTI/O
Filter for Removing Suffixed @ Symbols in fpp Output
C and Fortran Communication - Logical Values . . .
C and Fortran Communication - Character Values . .
Filter for Removing Suffixed @ Symbols in fpp Output

. .
.

. .

. .

. .

. .

. .

. .

. .
.

.

.
. .
. .
. .
. .
. .
. .
. .

.

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

.

2-3

4-4

5-l

5-3

5-3

5-4

5-5

7-l

7-2

7-4
7-8

9-2

9-3

9-5

9-6
9-8

9-11

11-9

11-11

11-12

12-12
13-5
13-7

15-13

Army Research Laboratory Supercomputer Facility - APG, MD

X

Introductory User Guide - May 1993

Intentionally left blank

Army Research Laboratory Supercomputer Facility - APG, MD

Introductory User Guide - May 1993

I. Introduction

1.1 Historical Overview

The Army Research Laboratory (ARL) traces its computational history through the Ballistic Research
Laboratory (BRL), one of the organizations from which it was formed. The BRL was the home of the
world’s first electronic digital computer, the ENIAC (Electronic Numerical Integrator and Calculator).
The ENLAC, developed from 1943 through 1946 and installed at the BRL in January 1947, was built under
contract to assist Army scientists in the calculations of ballistic trajectories, a task that the Army still per-
forms today. Developed at the Moore School of Electrical Engineering of the University of Pennsylvania,
the ENIAC contained 19,000 vacuum tubes and 1500 relays, and consumed 200 kilowatts of power.
Located in several rooms, the ENLAC was manually programmed by turning 3600 dials and setting
numerous switches and plug-in cables. Several weeks of setting up and verification were required for the
execution of a major program, a “major program” being the equivalent of 1000 l-address instructions exe-
cuted on a modern computer.

As a follow-on contract to the ENIAC, the University of Pennsylvania was awarded $105,600 for research
and development of a computer that incorporated a “stored program” design. This contract gave birth to
the EDVAC (Electronic Discrete Variable Automatic Computer) and to John von Neumann’s influence on
computers (Stern 1981). The EDVAC, the world’s first stored program computer, contained 1024 48bit
words of core memory and provided paper tape input/output and, later, punch card input/output. During
EDVAC’s life span, the BRL designed and added floating point hardware.

Subsequent to the EDVAC, the ORDVAC (0 d r nance Variable Automatic Computer) was built in 1952 by
the University of Illinois. This computer was operational for 12 years at the BRL and incorporated 4096
40-bit words of core memory, a lO,OOO-word drum, a magnetic tape drive, and punched tape and card
input/output.

The ENLAC through ORDVAC computers provided the cornerstones for the BRL-designed and BRL-built
BRLESC (BRL El t ec ronic Scientific Computer) I & II. These “high performance” machines were replaced
by a commercial mainframe, the last Cyber 7600, which served the Army from the late 1970s to the mid-
dle 1980s.

In the 198Os, the BRL embraced UNIX as an operating system and began to provide a distributed mini-
computer environment for BRL scientists. This led to the development of the BRLnet, a campus network
with numerous, well populated local area networks (LAN). C urrently, these LANs are populated with
minicomputers, super-minicomputers, and network printing devices. Additionally, the BRL scientific staff
developed a large suite of UNIX utilities and tools to provide a robust, user-friendly, and homogeneous
computing environment. Many of the tools and computing techniques developed at the BRL continue to
serve as models for other computer centers worldwide.

In 1985, the BRL’s director, Dr. Robert J. Eichelberger, recognized that the laboratory was ready for the
next generation computer. It was Dr. Eichelberger’s intent that the BRL have the best computational
tools available. Within 2 years, the BRL had procured two Cray supercomputers. In December 1986, the
BRL took delivery of a Cray X-MP/48 with a 128-million-word solid-state disk and in July of 1987 took
delivery of a 256-million-word Cray-2. The addition of these machines to the existing array of minicom-
puters, super-minicomputers, and high-resolution work stations established the laboratory as a high per-
formance computing center.

Army Research Laboratory Supercomputer Facility - APG, MD l-l

Introduction Introductory User Guide - May 1993

1.2 Computer Systems and Facilities

The Army Research Laboratory SuperComputer Facility (ARLSCF) has two supercomputers, a Cray

X-MP/48 and a Cray-2. Dispersed throughout the ARL technical directorates located at Aberdeen Prov-

ing Ground is a collection of minicomputers and super-minicomputers, including VAX 11/78Os, VAX

6320s Alliant FX8s, and CONVEX Cls. Additionally, a wide variety of workstations from vendors such

as Sun Microsystems, Silicon Graphics, Apollo, and Stellar complement the general purpose processors.

Local access to this equipment is provided via the BRLnet or MILNEIT, dialup terminals, and local termi-
nals connected to various Gandalf PACX 1000s. Nationwide access is provided through a number of net-

works.

The Cray-2 has four central processing units (CPUs), each with a 4.1-nanosecond clock, and 256 million
64-bit words of memory. Approximately 60 gigabytes of on-line, classified mass storage is available. A
Cray Tape Controller, which provides IBM 3480 magnetic tape capability, and a Masstor M860 robotic

storage device provide for off-line mass storage. The Cray-2, which runs strictly in a classified mode, is

connected to the DSNETl and various remote enclaves.

The Cray X-MI’/48 has four CPUs, each with an 8.5-nanosecond clock, and approximately 40 gigabytes

of unclassified mass storage. A 128-million-word solid-state disk is configured to use ldcache and as a pri-
mary swap device, thus making this resource available to all processes.

Both supercomputers run under UNICOS 6.1 and implement the Cray Data Migration procedures. Batch

procedures are controlled by the network queuing system (NQS). A wi e variety of output devices is avail- ‘d

able.

1.3 Applications Software

The ARLSCF software application codes and libraries are maintained by members of the ARLSCF staff.
Brief descriptions of such software are contained in the chapter, “Applications Software.” On-line assis-

tance is provided via the man or docview commands. Requests for information or assistance should be

sent by electronic mail to craysupport@arl.army.mil. Craysupport is an electronic mailbox read by
numerous individuals, including scientists and hardware/software support personnel, and its use is

encouraged for the exchange of questions, answers, and information.

1.4 Eligibility for User Accounts

Army organizations, other DOD organizations, and other Government organizations may use the ARLSCF.
Contractors working for any of these organizations may use the computer facility; however, the sponsoring
Government organization remains responsible for funding and management of the computer account.

Procedures for requesting accounts are contained in the chapter, “ARLSCF Computer Access.”

1.5 Charges and Accounting

The charges for computing on the Crays at the ARLSCF are calculated solely on the amount of CPU time

used, the priority category of the job, and the user’s funding category. The charges are subject to annual
review. The three priority categories are Normal, Express, and Deferred. The three funding categories are

ARL mission funded and AMC Tech Base, Subscriptions, and Hourly. ARL and AMC computing that is

neither mission funded nor Tech Base is charged as Subscription or Hourly.

l-2 Army Research Laboratory Supercomputer Facility - APG, MD

Introductory User Guide - May 1993 Introduction

Jobs submitted through NQS are in the Normal category unless they have been submitted explicitly to
either the Express or Deferred queues. Interactive jobs run within the Normal category unless a user has

specifically requested the Express or Deferred categories by use of the appropriate argument to the -n
parameter of the /usr/brl/bin/lim command.

Specially scheduled dedicated sessions incur an additional charge for the transition into and out of the
dedicated mode. The dedicated session is billed per wall clock hour including this transition time, and
reflects the use of all CPUs on the machine.

See Appendix A for the current rate structure.

1.5.1 ARL Mission Funded and AMC Tech Base Users

The ARL and the various Army Research, Development and Engineering Centers (RDECs) comprising the
Army Materiel Command (AMC) Technology Base have provided funding for the ARLSCF from their
6.1/6.2/6.3a funding categories. Users from these organizations working on projects funded similarly are

not charged a dollar rate for their computing. Instead, each organization is allocated a certain number of
hours of computing based on their share of the funds contributed. Jobs in the Normal category are
charged the number of hours used; in the Express category, twice that much; and in the Deferred category,
half that much. Dedicated sessions are charged quadruple the number of hours used, because all four
CPUs are dedicated, including transition time. AMC Tech Base organizations whose users overspend the
organization’s allocation will be charged for the additional time at prevailing rates. See Appendix A for
the current rate structure.

1.5.2 Subscriptions

Organizations which are neither ARL mission funded nor part of the AMC Technology Base but which
anticipate high usage during the fiscal year may request a subscription to the ARLSCF. A subscription,
which can be purchased for $300,000, $400,000, or $500,000, allocates to the subscriber a certain number
of hours at a reduced rate. Jobs from subscribing organizations are charged against the allocation as if
they were from AMC Tech Base organizations. Subscribing organizations whose users overspend the
organization’s allocation will be charged for the additional time at the subscription rate. There are no
refunds or carryovers for a subscribing organization which underspends its allocation. See Appendix A for
the current rate structure.

1.5.3 Monitoring Costs

The charges command is available on the Crays to enable users to keep track of their monthly or fiscal
year usage. It reports the exact number of hours incurred in each priority category and in dedicated mode.
The command man charges on either machine describes the various options. To determine his cumula-
tive bill, an hourly customer multiplies the number of hours in each category by the hourly charging rate
for that category and adds the results. Similarly, ARL mission funded, AMC Technology Base, and sub-
scription customers multiply the number of hours in each category by the charging weight for that
category, and add the results to get the cumulative number of hours decremented from their initial alloca-
tion.

1.5.4 Billing Questions

Questions regarding the charges and billing should be referred to the Billing Coordinator listed in Appen-
dix B.

Army Research Laboratory Supercomputer Facility - APG, MD l-3

Introduction Introductory User Guide - May 1993

1.6 Classified Work

The ARLSCF operates the Cray-2 continually in a system high, periods processing mode. Access to the
classified Cray-2 is via DSNETl, ARL (Ab er een site) Secure Enclaves, and STUIII dialup. Individuals d
desiring this service should contact either the Secure Computer Access Team or the Information System
Security Officer (ISSO) listed in Appendix B.

1.7 Schedules

For both Grays, a schedule of the normal operating times and scheduled deviations, and a history of unex-
pected down time due to power outages, machine crashes, etc., is kept in the file /usr/pub/notd on both
Crays and on many minicomputers within the ARLSCF. Users interested in this information can display
this file using the UNIX cat, pg, or more commands. In addition, on the Cray X-Ml’/48, the command
news notd displays the current schedule.

1.8 Computer Security

Computer security at the ARLSCF is a serious and constant issue. The ARLSCF staff is vigilant in pro-
tecting against fraud, waste, abuse, and, in particular, unauthorized access. Users share in the responsibil-
ity for protecting these resources; failing to act responsibly will jeopardize a user’s access to the ARLSCF.
Some practices important to computer security are:

.

.

.

.

.

.

.

.

.

.

Never write passwords where they can be seen by others - commit them to memory. Do not
post passwords on terminals. Do not program passwords into terminals’ function keys.

Do not, under any circumstances, enter passwords into any file, In particular, the qsub
command’s -u option permits a password to be supplied as part of an NQS job. Do not use
this option to provide a password.

Do not share passwords and do not give them to others. If more than one person needs access
to a specific project, the ARLSCF staff will establish multiple user accounts for that project.

Do not include passwords in electronic mail messages.

Do not leave terminals unattended and logged in.

Report immediately any seeming discrepancy between reported computer usage (see the preced-
ing section, “Monitoring Costs”) and expected computer usage. Better to cry “wolf” and be
wrong than to let an unauthorized user slip away.

Report immediately

Report immediately

Report immediately

Report immediately
ARLSCF ISSO.

unrequested/unexplainable output, hard copy or on the terminal.

moved, deleted, or altered files.

strange, duplicate, or lost electronic mail.

suspected security problem to the system administrator or the

1.9 Responsibilities

The computing assets of the ARLSCF are precious resources, and the privilege of accessing them carries
with it certain responsibilities. The ARLSCF staff is responsible for maintaining and operating the various

l-4 Army Research Laboratory Supercomputer Facility - APG, MD

Introductory User Guide - May 1993 Introduction

computer resources. Users share in the responsibility for maintaining and operating this facility and are
responsible

.

.

.

.

.

.

.

.

.

.

.

.

.

1.10

specifically for:

Reading and complying with the various guidelines and standard operating procedures (SOPS).

Monitoring computer usage to prevent waste and fraud.

Notifying the ARLSCF immediately of any change in a user’s status.

Ensuring that passwords are not compromised, that equipment is always physically secure, and
that access to equipment is always controlled.

Using the ARLSCF resources for official business only.

Creating backup files for their own important work.

Reading system bulletins to keep current with changes to the system (news news tells how).

Arranging for the disposition of tape, disk, and tape cartridge files upon termination of an
account.

Limiting one’s concurrent NQS jobs to two per queue.

Limiting one’s interactive jobs so as not to hog the system.

Removing or archiving unneeded files.

Limiting the size of files/messages mailed from the supercomputers.

Giving permissions only to the owner for the . (dot) files in one’s user space.

Computational Support Branch

The Computational Support Branch handles all output, maintains the reference and tape storage libraries,
handles tape processing and file restoration, and provides users with necessary documentation. Questions
of a general nature or to ascertain the responsible individual should be directed to the Chief (see Appendix
B for names).

1.11 User Services

The ARLSCF Scientific Support Team serves as the User Services/Help Center group. The team is dedi-
cated to helping users utilize the ARLSCF facilities to their fullest extent. The ARLSCF staff coordinates
training, provides in-house training, consults with users on any problems they may encounter, and assists
in porting codes to the supercomputers.

In addition to those people listed in Appendix B, support is obtained from the entire ARL technical com-
munity. Questions concerning procedures, implementation issues, and virtually any question relating to
high performance computing should be addressed electronically to craysupport@arl.army.mil.

Electronic mail is the preferred means of communication within the ARL. The craysupport mail list is
monitored by members of the ARLSCF staff responsible for operations, members of the on-site Cray
Research Inc. staff, and numerous members of the ARL scientific research staff. Any user desiring to
become a craysupport recipient may request to be included on the mailing list. Please send your request to
support-request@arl.army.mil.

The ARLSCF staff communicates hardware and software changes, explanations for extended down time,
training class and seminar announcements, and other matters to the user community through the
info-tray mail list. This mail list includes everyone receiving craysupport mail plus others who only want
to receive informative messages about the Cray. Users desiring to be on this mail list but not on craysup-
port should send their request to info-tray-request@arl.army.mil.

Army Research Laboratory Supercomputer Facility - APG, MD l-5

Introduction Introductory User Guide - May 1993

1.12 Eastern Time

The ARLSCF uses Eastern Time, either Eastern Standard Time or Eastern Daylight Time.

l-6 Army Research Laboratory Supercomputer Facility - APG, MD

Introductory User Guide - May 1993 ARLSCF Computer Access

2. ARLSCF Computer Access

The Army Research Laboratory SuperComputer Facility (ARLSCF) is located at Aberdeen Proving

Ground, MD. It provides services to Army scientists and engineers on site and around the country. Access
to the ARLSCF computers, for most users, usually involves a connection via a computer network or tele-
phone line. This chapter describes the procedures to request accounts on ARLSCF computers, and to con-
nect with and log into and out of them.

2.1 Requesting an Account

Persons who are employees of Government agencies, civilian contractors working for Government agencies,
or employees of firms which are working under Government contracts may request accounts on ARLSCF
computers. For Cray-2 accounts, a security clearance is required. To apply for accounts, send a written
or electronic mail request to the appropriate address listed in Appendix B. The request should specify the
names of all persons desiring accounts, their phone numbers, agency addresses, supervisors, and the com-
puters to which access is desired (including ARLSCF front end machines, if necessary). Account request
and security clearance forms, as appropriate, will be sent to each individual upon receipt of requests. User
id’s, accounting classification numbers, and dialup phone numbers are issued upon receipt and approval of
these forms. This procedure normally takes about 1 week to complete, and is necessary to ensure that the
ARLSCF abides by the U. S. Government policy regardin, m access to supercomputers. Supervisors of ARL
or Army Materiel Systems Analysis Activity (AMSAA) employees may contact the Cray Account Adminis-
trator in person to establish accounts for them.

2.2 Methods of Access

The ARLSCF computers are accessible through the INTERNET (including MILnet, ARPAnet, and
NSFnet), through other computers on the ARL-APG site LAN (BRLnet), or through the classified network.
A direct dialup phone connection cannot be used directly to access the supercomputers; however, such con-
nections can be established to a minicomputer on the BRLnet.

2.2.1 INTERNET Access

The INTERNET is a collection of networks including the NSFnet, the ARPAnet, and the MILnet (among
others), all three of which use the TCP/IP communications protocol. These three networks are managed
and supported by the DOD and constitute the Defense Data Network (DDN).

Users with INTERNET connectivity and running TCP/lP software may access the ARLSCF computers by
invoking the TELNET utility:

telnet internettargethostname

or

telnet internettarget-numerical-address

Upon establishing a connection, the user receives a login prompt.

Army Research Laboratory Supercomputer Facility - APG, MD 2-l

ARLSCF Computer Access Introductory User Guide - May 1993

Users with TAC (Terminal Access Controller) access may use the TAC to access the ARLSCF computers.

Once a connection to the TAC has been established, it may be necessary to enter CTRL-Q to wake up

the TAC. At that point, enter

@o[pen] intefnettargetnumericaladdress

The TAC will then prompt for and verify the user’s TAC id and access code before connecting to the tar-

get machine. After logging out of the target machine, the user will be returned to the TAC. Enter

@c[lose]

@1 [ogout]

to close the connection (may not be necessary) and log out of the TAC. On most TACs it is possible to

reach the DDN Network Information Center by entering

@n[ews]

The INTERNET names and addresses of the Cray X-MI’/48 and of a front end computer are:

Cray X-MP/48 patton.arl.army.mil 128.83.23.5 or 192.5.21.20

Gould 9080 adm.arl.army.mil 192.5.25.4 or 192.5.21.30

The Cray-2 is on the DSNETl, a classified network, rather than the INTERNET. Connections can be

made in a similar manner, but neither the names nor addresses can be provided because they are classified.

Off-site Cray-2 users who need assistance in establishing their connection mode to the machine can con-

tact the Secure Computer Access Team (scat@arl.army.mil) for help.

2.2.2 The BRLnet

The ARL-APG LAN (BRLnet) p rovides direct access to both Cray supercomputers through front end

machines. The BRLnet is available to users with modems via several dialup phone lines (300, 900, 1200,

2400, 4800, and 9600 baud), and to users with direct connections to computers on the BRLnet. The dialup

numbers and the baud rates for each will be released to the user once an account has been approved.

There are two methods by which ARLSCF computers may be accessed from the BRLnet. The first is
through use of the rlogin utility (e.g., rlogin patton.arl.army.mil for the Cray X-W/48). The second

is by way of the TELNET utility, as described in the preceding section, “INTERNET Access.”

2.3 UNICOS Login Message

ARLSCF computers operate under UNIX, or variants thereof (e.g., UNICOS). Once a connection has been

established, the user receives a warning regarding unauthorized access and then the login: prompt. The

proper response is to enter the assigned username followed by a carriage return, after which the Pass-

word: prompt is issued. The user responds with the password followed by a carriage return. Once login
has been completed, the system displays the date and time of the last login followed by the message of the
day, a short bulletin containing system information of which the user should be aware during the login ses-

sion.

2.4 Logging Out

To log out of an ARLSCF computer, enter a CTRL-D as the first character on a line or enter the com-
mand logout. If the ARLSCF computer has been accessed from another computer, the user is returned to

that computer and should follow the normal procedure for logging out of that computer. If the connection

2-2 Army Research Laboratory Supercomputer Facility - APG, MD

Introductory User Guide - May 1993 ARLSCF Computer Access

has been made through the TAC, then the user is returned to the TAC and should follow the normal pro-
cedure for logging out of the TAC, as described in the preceding section, “INTERNET Access.”

Figure 2.1 displays a sample login session demonstrating access to the ARLSCF Cray x-MP/48 via the
TELNET utility using the INTERNET numerical address. Actual keyboard entries are emboldened, .

indicates a RETURN, and * indicates a CTRL-.

% telnet 128.63.23.5.
Trying 128.63.23.5...
Connected to 128.63.23.5.
Escape character is ‘A]‘.

Cray UNICDS (patton) (ttypOl1)

~****************
* Unauthorized users of this computer are subject to prosecution. *

~*******~

1 og i n : user-name*

Password : user enters password, not echoed to screem

Last successful login was : Fri Nov 6 09:OO:Ol from adm.arl.army.mil
~~~~~*~~~~~***************~~~~~~~~~
* Running UNICDS 6.1. Report any problems to craysupport@arl.army.mil*
* *
* Use news to get info about the system. “news news” tells how. *
* Any unread news items are denoted by “news: filename” upon login. *
***~~*~~~~*~~~~*~*~~~~~~~~~~~

news : notd cos change-passwd gc schedule at-batch-cron deferred.q nqs.queues
abaqus nqs.policy disspla.imagen restorations tmpdir express.que G.lupgrade
arlscf-policy news flint sysadmin

patton> date*

Fri Nov 6 10:30:15 EST 1992

patton> WConnection closed by foreign host.

%

Figure 2.1. TELNET Access to the ARLSCF Cray X-MP/48

2.5 ARLSCF Points of Contact

See Appendix B for the current list of points of contact for various problems or questions that may arise
regarding the ARLSCF.

Army Research Laboratory Supercomputer Facility - APG, MD 2-3

ARLSCF Computer Access

Intentionally Left Blank

Introductory User Guide - May 1993

2-4 Army Research Laboratory Supercomputer Facility - APG, MD

Introductory User Guide - May 1993 UNICOS - The Operating System

3. UNICOS -
The Operating System

This chapter applies specifically to the ARLSCF Cray computers; however, to the considerable degree that
UNICOS is similar to AT&T System V UNIX or BSD UNIX version 4.2, the information presented applies
also to the various other computers at ARLSCF.

3.1 UNICOS Features

UNICOS is the UNIX-based+ operating system running on the Cray X-MP and the Gray-2 supercomput-
ers at the ARLSCF. It consists of the core operating system, an extensive set of utilities, and several com-
mand line interpreters, known as shells. The flexibility and portability of the UNM operating system
make it an ideal choice for supercomputer operations. The Cray enhancements incorporated in UNICOS
are largely in these areas:

File system improvements to provide supercomputer class I/O performance.

Support for multiple processors and multitasking.

Additional debugging aids.

System accounting features.

Additional batch processing capabilities.

Increased CPU time and memory size limits.

3.1.1 On-Line Help

UNICOS provides an on-line help facility. Executing man commanhname displays the command’s refer-
ence manual pages on the screen. For example, man man provides detailed information on the operation
of the man command. Additional information may be found in the chapter, “On-line Information.”

3.1.2 Shells

A shell is a user’s interface to the UNICOS operating system. As commands are entered, the user’s shell
interprets the line and relays the information to the operating system for processing. A command pro-
gramming language is provided, and executable files, known as shell scripts, can be produced. Shell scripts
are used to group shell commands so they may be executed conveniently and repeatedly. UNICOS sup-
ports the C shell, /bin/csh, the B ourne shell, /bin/sh, and the Korn shell, /bin/ksh. Users are not lim-
ited to these three shells because UNICOS permits implementation of others. Two of ARLSCF’s own
shells, the TC shell, /usr/brl/bin/tcsh, and the TB shell, / usr/brl/bin/tbsh, are available to users.

t AT&T System V UNIX with BSD enhancements and Cray enhancements.

Army Research Laboratory Supercomputer Facility - APG, MD 3-l

UNICOS - The Operating System Introductory User Guide - May 1993

All five of these shells are similar, but each has its own unique capabilities and features. Users, initially
assigned the Bourne shell, may change their shell as desired by executing
chsh fulLpathname-of-desired-shell.

3.1.2.1 Command Syntax

In general, shell commands follow a common syntax:

command-name [-option [argument] [-option [argument] . ..I] operands

The command and its arguments are separated by spaces. Each command line is terminated by a return.

Most commands allow certain minor abbreviations in syntax (e.g., multiple options without arguments con-
catenated into one string prefixed with a single hyphen), and certain commands do not strictly follow it.
Detailed information about any command may be obtained on-line by executing man commanhname.

3 .1.2.2 Metacharacters

Metacharacters are keyboard characters which have special meaning to UNICOS, to the user’s shell, or to
a UNICOS program. The UNICOS metacharacters, whose meanings may be context dependent, and for
which complete descriptions may be obtained by executing man sh, are:

. : ; ? ! () [] { } 1 * < > & * # $ @ \ ’ ’ ” newline space tab

In addition, many UNICOS programs (in particular, editors) recognize their own metacharacters, usually
having considerable overlap with the UNICOS metacharacters. For detailed information on such pro-
grams, execute man command-name.

3.1.2.3 A Few Useful Commands

UNICOS provides a large suite of utilities for creating, deleting, inquiring about, and otherwise manipulat-
ing files. A few of the more basic ones, to get the complete novice started, follow. These commands accept
a number of options, arguments, and operands, for which detailed information may be obtained by execut-
ing man command.

cat Jiles [> [>] other-file] C oncatenate files into other-file, which is created or overwritten (>), or

cd [name]

cp file1 file&

diff fklel file2

jove fife

created or appended to (> >). fif es is a blank-separated list of file names. Without
other-file, the concatenation is to standard out.

From the current directory, move into directory name; name must provide sufficient
identifying information. With no argument, return to the user’s home directory.

Copy file1 onto file,?, overwriting any existing file!?.

Perform a line by line comparison of fifef and file2, displaying differences at the termi-
nal. diff file1 file2 > file.9 redirects the results into fileJ.

Enter jove, a popular and well supported screen editor at ARLSCF, creating a copy of
file as the work file. Additional information may be found in the chapter, “Text Edi-
tors.”

1s -al

mkdir name

mv file1 file.2

List in long form (-1) all (-a) fil es in the current (sub)directory.

Create a new sudbirectory, name.

Move (actually rename, subject to certain conditions) file1 to fi/eZ, destroying any
existing fifed.

pwd Display the complete name of the current (i.e., present working) directory.

3-2 Army Research Laboratory Supercomputer Facility - APG, MD

Introductory User Guide - May 1993 UNICOS - The Operating System

rm files Remove all files in the blank-separated list of fifes. Be exceptionally careful of any
variant of this command using metacharacters, to avoid removing more files than is
intended.

rmdir name Remove the empty subdirectory name.

3.1.3 Network Queuing System

The NQS is the only way to submit Cray jobs requesting more than 10 minutes execution time. In addi-
tion, NQS submissions are advantageous even for shorter jobs because

l NQS jobs lend themselves to management by ARLSCF staff, alleviating certain problems which can
occur when too many jobs request too much memory.

l NQS jobs do not retain control of the user’s shell/terminal after submission.

l NQS jobs are automatically checkpointed before intentional system shutdowns, thus allowing
recovery when the machine returns.

Additional information may be found in the chapter, “Batch Jobs.”

3.1.4 File Migration

Disk space on the ARLSCF Crays, although large, is limited. File migration is a system process whereby
larger, less often used disk files are automatically, and more or less transparently to the user, transferred
to tape storage. Additional information may be found in the chapter, “File Storage - On- and Off-Line.”

3.2 The File System

The general characteristics of the UNICOS file system are typical of many UNM systems. It is a hierarchi-
cal tree structure consisting of several types of files. Individual files may contain text, data, or binary
information. The files are grouped into manageably sized file (sub)systems to optimize disk space and to
provide effective I/O throughput. Each user’s set of files is organized as a branch of the tree, whereon each
one of that user’s files and subdirectories is a leaf or a sub-branch. To create, delete, modify, or execute
files, a user must have the appropriate access permissions to those files. Information about permissions
may be obtained by executing man chmod and man Is.

3.2.1 Types of Files

The UNICOS file system incorporates several different types of files, of which the following are the more
likely to be of interest to typical users:

regular The typical user file, containing text, data, source code (a form of text), object code, and
executable programs.

directory A file containing information which enables the operating system to access other files (which
may include other directories) within the directory, and to return to the directory’s parent.
(A file’s or directory’s parent is the branch from which it sprouts.)

migrated A regular file which, due to demands for disk space, has been “migrated” to off-line storage.
Only the name of the file and information sufficient to retrieve it in a more or less tran-
sparent way remains on-line.

Army Research Laboratory Supercomputer Facility - APG, MD 3-3

UNICOS - The Operating System Introductory User Guide - May 1993

special Typically, a file containing information enabling the operating system to deal with devices
used for input and output. The file actually represents the device. On other UNIX systems,
certain of these files are directly addressed by users; for example, to read a “tar” tape, a
user might execute tar /dev/rmtO, /dev/rmtO being a special file representing a tape
drive. Under UNICOS, however, other methods are used (see the tar paragraph in the
chapter, “File Transfers,” and users have little need to explicitly name special files. The
special file /dev/null is a notable exception. Output redirected to /dev/null
(>/dev/null) on UNICOS and other UNIX systems is effectively suppressed.

3.2.2 Directories and Paths

From the operating system’s perspective, a directory is a file containing information which enables it to
access other files (which may include other directories) within the directory, and to return to the
directory’s parent. From a user’s perspective, a directory is a hierarchical structure of files and
(sub)directories. A user’s file structure begins with the user’s home directory, into which he is placed upon
logging in, and in which he may create as many files and nested or unnested (sub)directories as desired, in
a tree structure which extends as broadly and as deeply as desired.

The origin of the entire UNICOS file system is the “root” directory, with complete name “/“. Some few
of the topmost levels in root are:

/

/bin

/bin/cat

/bin/is

/etc

/ usr

/usr/bin

/usr/ucb

root; the directory containing everything

directory containing user-oriented commands

the cat command

/usr/ucb/ls

/usr/brl/bin

/usr/local/bin

the 1s command, AT&T System V style

directory containing data and commands related to system administration

directory containing system files and directories

directory containing user-oriented commands

directory containing user-oriented commands from University of California at
Berkeley

the 1s command, Berkeley style

directory containing user-oriented commands developed at the then USABRL

directory containing user-oriented commands not part of the normal UNICOS distri-
bution and of somewhat specialized interest; often proprietary

directory containing special files for I/O devices

directory containing system libraries

/dev

/lib

/organization-name directory containing home directories of that organization’s employees

This brief list raises questions about navigating within and across directories, and accessing specific files.
The names listed above are, in every case, full path names - that is, they specify, unambiguously and
absolutely (i.e., with respect to root, the origin of the entire file system), the location in the file system tree
of the named file.

A user can reference a file in two completely different ways: as a command to be executed (e.g., the cat in
cat fire), or as an operand (e.g., the file in cat file).

First, we discuss files as operands. A file name (e.g., mydata, mypgm.f, or a.out) is a relative path
name referencing a file of that name in (relative to) the current directory. A file name prefixed by one or
more subdirectory names (e.g., pressure/oct91 or temperature/internal/jan92) but not with an ini-
tial slash, is a relative path name referencing a file whose name is the last component in the string, and
which is to be found by descending the directory hierarchy as indicated by the successive component

3-4 Army Research Laboratory Supercomputer Facility - APG, MD

Introductory User Guide - May 1993 UNICOS - The Operating System

names, starting in the current directory. Note that the components of the path are always separated by
single slashes. A prefix of “./” on a relative path name is equivalent to prefixing it with the current direc-
tory name, which is merely redundant in this discussion, but will not be later. A prefix of “../” on a rela-
tive path name is the logical equivalent of prefixing it with the parent of the current directory. A “..”
appearing as an intermediate component in a relative path name is the logical equivalent of the name of
the parent of the directory immediately before the “..“. Note that these two effects of “..” cannot be
duplicated with actual path names because “..” is the only symbol which causes the path to travel back up
the directory tree. Starting at root is not the equivalent because it forces initiation at the origin, not
travel in the reverse direction.

Now consider file names used as commands, e.g., 1s to obtain a list of file names in the current directory.
Everything stated concerning file names used as operands applies here, and more. Rarely is a user’s
current directory the directory which contains a UNICOS command such as 1s. Hence, a user almost
always would be required to enter a full path name (e.g., /bin/s or /usr/ucb/ls) for a command, but
for the PATH variable. Each user has a PATH variable, which is assigned a default value when the user
is first granted an account. Users may change their own PATH variable definitions to suit their own
needs. The techniques for setting the variable and the considerations involved in choosing its value are
beyond the scope of this short discussion. Users unfamiliar with the significance of alterations to their
PATHS are urged to seek competent advice before attempting alterations.

A user’s PATH contains a colon-separated list of full path names to the directories within which are
found the commands of which that user makes use. The names are in a particular order. When a user
issues a command by entering its name without explicit path information, UNICOS does not expect to find
that command in the current directory. Rather, UNICOS searches all the directories whose full path
names are in the user’s PATH variable, in the order in which they occur, until an executable file whose
name matches the command name is found. That file is the command which is executed. Thus, for exam-
ple, by incorporating /bin, or /usr/ucb, or both in the desired order, in their PATHS, users may control
which 1s command is executed when they enter 1s as a command. The “other” 1s still may be selected by
entering its full path name as a command when desired. A user might even have his own tailor made ver-
sion of 1s in one of his own directories (typically named .utility or .bin) and name that directory early in
his PATH. Whenever a command name is entered with explicit full or relative path name information,
PATH is not used for the search; rather, the rules for finding a file named as an operand are followed.
The usefulness of “./” as a command name prefix (merely redundant as an operand name prefix) is that,
when a command is so prefixed, it has explicit path information. Thus, ./file means execute file found in
the current directory, rather than fife found by searching the PATH.

The different performance provided by different commands with the same names (e.g., /bin/is versus
/usr/ucb/ls) can be surprising to inexperienced users. Sometimes it can be frustrating. Consider the rsh
command. /usr/ucb/rsh opens a shell on a remote machine. It permits a user logged in to an ARLSCF
Cray to execute a command on some remote machine networked with the Cray. /bin/rsh, however,
opens a restricted shell on the Gray. A user who expects to execute /usr/ucb/rsh when he types rsh, but
instead executes /bin/rsh, is likely to become frustrated unless he understands the selection mechanism.
For the convenience of users who give priority to /bin over /usr/ucb in their PATHS, UNICOS provides
/usr/ucb/remsh, a synonym for /usr/ucb/rsh. remsh cannot result in executing /bin/rsh, regard-
less of a user’s PATH.

3.2.3 File Names

UNICOS file names may contain up to 14 characters and consist of letters, numbers, periods, underscores,
and other printable and unprintable characters. Upper and lower case letters are different characters. It is
most strongly emphasized that users ought to limit their files’ names to those consisting only of letters,
numbers, periods, and underscores. To use characters in addition to these is to court unexpected, and
sometimes disastrous, behavior.

Army Research Laboratory Supercomputer Facility - APG, MD 3-5

UNICOS - The Operating System Introductory User Guide - May 1993

By convention, certain file name suffixes have special meanings under UNICOS. Various UNIX systems
require various ones of these suffixes for various commands. For example, cft77 accepts but does not
require the .f suffix whereas cf77 requires it.

.a file contains an object code library

.C file contains C source code

.f file contains Fortran source code

.F file contains Fortran source code to be preprocessed by gpp under cf77

.h file contains C source code header information

.l file contains listing output from a compiler or assembler

.O file contains object code

*P file contains Pascal source code

.S file contains assembler source code

.z file has been packed; unpack will return it to its original condition

.Z file has been compressed; uncompress will return it to its original condition

3.2.4 File Permissions

Each file (including directories) has associated permissions which control access to the file. A file inherits
its set of permissions from its owner when the file is created. The owner may change the permissions of
existing files (chmod), or change the permissions which all his files acquire automatically upon creation
(urnask). When a user is initially granted an account, the “automatically acquired upon file creation”
permission set is defined so that no one other than that user has any access to his files. Current policy at
ARLSCF is that users who increase the accessibility of their files assume responsibility for any security vio-
lations which occur due to that increased accessibility. Be aware that ARLSCF computers are linked to
international networks and that there have been attempts to gain unauthorized access.

1s -1 displays, among other things, the permissions associated with files. For example, 1s -1 fife might
yield

-Rex------ (other information) file

The leftmost 10 columns are of interest. The first column indicates, not permission, but that fife is a regu-
lar file. A d in this position would indicate a directory (ultimately, a directory is a file, but a specialized
one whose contents enable the system to locate the other files “in” the directory), an m, a migrated file,
and there are a few other characters which might appear. The next nine columns are to be considered as
three triplets, the first triplet pertaining to file’s owner, the second, to file’s group, and the third, to every-
one else. The permissions possible are to read from, to write to, and to execute as a program the already
existing file. In this example, file’s owner can do all three, and no one else can do anything. For a particu-
larly precious data file, the owner might choose permissions r--------. There are a few other charac-
ters which might appear instead of r, w, and x.

Permissions on a directory have a somewhat different interpretation. To have write permission to a direc-
tory is to be able to modify the directory file itself - that is, to be able to create and remove files within
the directory. To be able to manipulate files conveniently, a user needs both read and execute permission
on his parent directory. Read permission without execute permission on a directory allows a user to do
nothing more than obtain the names of the files therein. Execute permission without read permission on a
directory allows a user to do everything he could do with both, except obtain the names of the files therein.
Therefore, without read permission, the user must have independent knowledge of the file names in order
to access the file.

3-6 Army Research Laboratory Supercomputer Facility - APG, MD

Introductory User Guide - May 1993 X11 Window System

4. XII Window System

Various computers at the ARLSCF, including both Grays, provide version 11 of the X Window System,
henceforth referenced as X11.

X11 programs and libraries provided by Cray Research, Inc. are in /usr/bin/Xll and /usr/lib, respec-
tively. Detailed information may be found in the Cray publication, UNICOS X Window System Reference

hfunual, SR-2101 6.0. There are X11 interfaces to the Cray debugger, cdbx (discussed in the Gray publi-
cations, UNICOS CDBX Debugger User’s Guide, SG-2094 6.0, and UNICOS CDBX Symbolic Debugger

Reference Manual, SR-2091 6.1) and to the Cray performance utilities atexpert, atscope, flowview,
perfview, and profview (discussed in the Cray publication, UNICOS Performance Utilities Reference

Manual, SR-2040 6.0).

X11 programs and libraries from other sources are in /usr/Xll/bin and /usr/Xll/lib, respectively.

4.1 ARLSCF Xl1 Programs

Some of the X11 programs available at the ARLSCF are listed below. Additional information may be
found in the man pages. Depending on a user’s environment, it may be necessary to augment the man
command with the argument -M /usr/Xll/man or to add :/usr/Xll/man to the environmental vari-
able, MANPATH. All these programs open windows via xterm. The mail- and news-related programs
are not available on the Grays.

xchoose

xdu

xftp

xmsg

xod

xrcvalert

xrn

xrgbsel

xtw

xuptime

provides a menu capability for shell scripts. Accepts the menu items as command line
arguments, or as lines from standard input, and writes to standard output the menu item
selected. Usage: CHOICE=’ Is 1 xchoose‘ .

displays graphically the output of du. Usage: du 1 xdu.

Xl 1 version of ftp.

reads electronic mail of the form used at the ARLSCF, and is patterned after msg and
xrn, with certain extensions. Opens multiple windows to read, send, answer, and forward
mail. The default mail file is $HOME/mailbox.

displays binary files created on various machines. There is a menu selection of the creating
machine (Convex, Gray, IBM, IEEE, Vax) and of the desired display conversion.

mail receipt notification program whose invocation is specified in the user’s .maildelivery
file. When mail is received, the mail system invokes xrcvalert, which prints a line in the
root window screen and sounds a bell.

the X11 counterpart of rn.

displays on a color X display those colors which can be specified by name in an X program.
It reads file /usr/Xll/lib/Xll/rgb.txt to obtain color names and mixes.

displays a directory tree. The current directory’s ancestry is shown as a trunk to its left,
and its descendants expand into a tree to the right. The tree may be walked with a
mouse, and the display expands or contracts as appropriate.

prints the time, the length of time the system has been up, the number of users logged in,
and the average number of jobs in the run queue over the last 1, 5, and 15 minutes, and
plots a graph of the CPU load verses time. Usage: uptime 1 xuptime.

Army Research Laboratory Supercomputer Facility - APG, MD 4-l

X11 Window System Introductory User Guide - May 1993

4.2 Compiling Xl1 Programs

X11 C programmers are strongly encouraged to create an Imakefile and use command xmkmf to to gen-
erate a makefile with the proper definitions for a given computer. If the makefile is created manually, it

is likely that the arguments -DXNOT_POSIX and -DXNOT-STDC-ENV will be needed on the
cc command line.

4.3 ARLSCF Fortran Interface to X11

/usr/Xll/lib/libXf77 .a is the ARLSCF Fortran Xl1 library. It contains subroutines of two kinds, one
kind to provide a menu capability for Fortran programs, and the other, to create plots from Fortran pro-
grams.

4.3.1 X11 Menus from Fortran

The xlmenu subroutine causes a menu to pop up on the screen, centered on the current position of the
mouse cursor, and returns the index of the menu item selected upon release of the mouse button. Useful
for prompting an interactive Fortran program’s user to select an item from a list. XMENU is the same
as XLMENU, except that there is no title. The font used within the menus is specified in the user’s X
application resources data base file, e.g., Xmenu.font: 8xl3bold. Typically, this file is named .Xde-
faults or .Xres. For example,

CALL XLMENU (title,list,nfist,jpiel;d)

title a character string, the title of the menu
list a character array, each element being a menu item
nlist an integer, the number of menu items in list
jpickd an integer, the returned ordinal of the selected menu item

4.3.2 X11 Plotting from Fortran

All arguments beginning with i are INTEGER, all others, CHARACTER. All heights, widths, dis-
tances, and positions are expressed in pixels, relative to (0,O) at the lower left corner of the window.

XCOLOR (string) Sets the current foreground color to that specified by dring. A list of
strings with their red, green, and blue components is located in
/usr/Xll/lib/Xll/rgb.txt. Command xrgbsel displays the colors
specified in /usr/Xll/lib/Xll/rgb.txt.

XDRAW (iz,@) Draws a line to iz,iy, which becomes the current position.

XERASE Erases the window.

XFLUSH Flushes output to the X display.

XFONT (string) Sets the current font as specified by string. Command xlsfonts lists, and
commands xfontsel and xfbrows display, the various fonts available on
the display device.

XINIT Required. Must be called first to create the window in accord with the fore-
ground, background, and geometry resources defined in the user’s X appli-
cation resources data base file (typically named .Xdefaults or Xres), or in
accord with defaults. For example,

4-2 Army Research Laboratory Supercomputer Facility - AF’G, MD

Introductory User Guide - May 1993 Xl1 Window System

XLOCAT (iz,iy,ibuttn)

XLTYPE (string)

XLWID (iw)

XMOVE (iz,iy)

XPAUSE

XPOLYF (iz,iy,np)

XRGB (ired,igreen,iblue)

XRSIZE (iw,ih)

Xplot.forground: yellow
Xplot.background: blue
Xplot.geometry: 600x450+200+100

The defaults are black, white, and half the screen width by half the screen
height, with no positioning, respectively.

provides information about the X11 server. inq is an 8-element integer
array in which are returned:

inq(l) window width
inq(2) window height
inq(3) screen width
inq(4) screen height
inq(5) pixels per inch horizontally
inq(6) pixels per inch vertically
inq(7) character height
inq(8) maximum number of colors

Returns pixel location iz,iy pointed to by the mouse when button ibuttn is
pushed. The mouse buttons are usually numbered left to right.

Sets the line type to string, which must be one of solid, dot, dash, and
dotdash.

Sets the line width to iw pixels.

Moves the pen to iz,iy, which becomes the current position.

Pause until a mouse button is pushed in the plot window.

Draws a closed filled convex polygon using the current foreground color.
Integer arrays iz and iy contain np coordinate pairs. If the first and last
points do not coincide, the polygon is automatically closed.

Sets the current foreground color to that specified by the arguments, which
have values from 0 through 32767, and specify the intensity of the
corresponding primary color.

Changes the width and height of the window to iw,ih, respectively. Should
not be called after plotting has begun but may be called between plots.

XRSTR (iz,iy,iang,string) Places a rotated string at position iz,iy with angle of rotation iang. iang

increases in the counterclockwise direction with zero at the 3 o’clock posi-
tion, and is in degrees times 64.

XSTR (iz,iy,string) Places the lower left corner of string at position iz,iy on the plot, which
position becomes the current position.

XTEXTW (string,iw) Returns in iw the width in pixels of string.

XTITLE (title) Changes the title on the window and on the window manager icon to title.

4.3.3 Sample Fortran Program with X11 Interface

Figure 4.1 presents a simple Cray Fortran program which computes the monthly outstanding balance of a
simple interest loan. Results are displayed graphically with two different formats. The segldr command
requires arguments -L/usr/Xll/lib -1Xf77 -1X11.

Army Research Laboratory Supercomputer Facility - APG, MD 4-3

X11 Window System Introductory User Guide - May 1993

program loan

C affects appearance; eg, 3.0 means

C and 2999.

C 5.0 means

C

C

C

4-4

3000. is by 1000s

is by 100s

break is at 500.,

5000., 50000., etc.

parameter (break=5.)

character abc*lO, format*26, title*63

dimension npix(8), iscr(2), ires(2)

equivalence (iscr(l),npix(3)), (ires(l),npix(5)),

+ (ichht,npix(7)), (ncolor,npix(8))

dimension date(600), bal(600)

iwide = int (log1O(x+.O1))+1

read initial amount, monthly payment, annual interest percent

write (*,‘(/2a/)‘)

+ ‘Enter initial amount, monthly payment, annual percent, ‘,

+ ’ with decimal points:’

read (*,*) bal(l), pay, fint

date(l) = 0.

create the format to create the title

write (format,‘(a,i2.2,a,i2.2,a,il,a)‘)

+ ‘(a,f ‘,iwide(bal(l))+3, ‘.2,a,f ‘,

+ iwide(pay)+3, ‘.2,a,f ‘,

+ iwide(fint)+3, ‘.2,a)’
create the title
write (title,format)

+ ‘LOAN AMORTIZATION: $‘,bal(l),’ by $‘,pay,’ monthly, at ‘,

+ fint, ‘%’

compute monthly balances

fint = 1. + fint / 100. / 12.

n=l

do while (bal(n).gt.O.)

n=n+l

date(n) = date(n-1) + 1./12.

bal(n) = bal(n-1) * fint - pay

enddo

bal(n) = 0.

call xinit

call xtitle (title)

call xfont (‘screen.b.14’)

border width in pixels

ibdr = 10

distance between vertical axis tic marks, user units

yinc = 10. ** int (loglO(bal(l)/break+.Ol))

plotting limits, user units

xmin = date(l)

xmax = aint (date(n)+l.)

iymax = int (bal(l)/yinc+l.)

if (mod(iymax,2).ne.O) iymax = iymax + 1

ymax = iymax * yinc

horizontal space for vertical axis labels, pixels

Army Research Laboratory Supercomputer Facility - AF’G, MD

Introductory User Guide - May 1993 X11 Window System

abc = ‘1000000000’
call xtextw (abc(l:int(loglO(ymax+.Ol))+l),ix)
ix = ix + ibdr

C output results, change window size, output results
do 100 loop = 1 , 2

if (loop.eq.2) call xrsize (800,600)
C query the X server

call xinq (npix)

iy = ichht * 2 + ibdr
mx = npix(1) - ibdr*2
my = npix(2) - ibdr
xscl = real (mx-ix) / (xmax-xmin)
yscl = real (my-iy) / ymax
call xtextw (‘Payment Years’,iix)
call xstr (ix+(mx-ix_iix)/2,ibdr, ‘Payment Years’)

C

C

C

C

C

draw axes with solid lines
call xltype (‘solid ‘)
call xmove (ix,iy)
call xdraw (ix,my)
call xdraw (mx,my)
call xdraw (mx,iy)
call xdraw (ix,iy)

draw results - red lines if color is available
if (ncolor.gt.2) call xcolor (‘red’)
call xmove (ix,int(bal(l)*yscl+iy))
do i = 2 , n

jx = (date(i)-xmin) * xscl + ix
jy = bal(i) * yscl + iy
call xdraw (jx,jy)

enddo

change background to black if color is available
if (ncolor.gt.2) call xcolor (‘black’)

draw and label grid - use dotted lines
call xltype (‘dot’)
vertical lines
write (abc, ‘(i2) ‘) int (mod(xmin,lOO.))
call xtextw (abc(l:2),jjw)
call xstr (ix-jjw/2,iy_ichht,abc(l:2))
do id = nint(xmin)+l , nint(xmax)-1

jx = (real(id)-xmin) * xscl + ix
call xmove (jx,iy)
call xdraw (jx,my)
write (abc,‘(i2)‘) int (mod(real(id),lOO.))
call xstr (jx-jjw/2,iy_ichht,abc(l:2))

enddo
write (abc, ‘(i2)‘) int (mod(xmax,lOO.))
call xstr (int((xmax-xmin)*xscl)+ix-jjw/2,iy_ichht,abc(l:2))
horizontal lines
write (abc,‘(ilO)‘) 0
call xstr (ibdr/2,iy-ichht/3,abc(ll-iwide(ymax):lO))
do id = 2 , iymax-2 , 2

jy = real(id) * yinc * yscl + iy

Army Research Laboratory Supercomputer Facility - APG, MD 4-5

X11 Window System Introductory User Guide - May 1993

call xmove (ix,jy)
call xdraw (mx,jy)
write (abc,‘(ilO)‘) nint(id*yinc)
call xstr (ibdr/2,jy-ichht/3,abc(ll-iwide(ymax):lO))

enddo
write (abc, ‘(ilo)‘) nint (iymax*yinc)
call xstr (ibdr/2,iymax*int(yinc*yscl)+iy-ichht/3,

+ abc(ll-iwide(ymax):lO))

call xpause
call xerase

100 continue

end

Figure 4.1. Fortran Program Producing X Window Graphical Output

4.4 X11 Interface to PVI

To use the X11 PVI driver on a remote system such as the Cray X-MI’/48, patton.arl.army.mil,
/usr/brl/bin/tcsh users and /bin/csh users must

setenv PVI_DEV_1 xl1
setenv DISPLAY display_name.domain-name:0

and /bin/sh users must

PVI-DEV-1=x11
DISPLAY=display_name.domain-name:0
export PVIDEV-1 DISPLAY

A typical domain name for ARL users is arl.army.mil. The trailing :0 indicates that the display consists
of only one device.

In addition, on an X terminal or workstation, a user would execute xhost hostname.domain_name or
would add (or request to have added) a host._name.domain-name line to file /etc/XO.hosts. The xhost
command must be executed each time the host is brought up under X Windows, whereas the entry in
/etc/XO.hosts need be made only once.

The following entries in the X resource data base manager file (typically .Xdefaults or .Xres; read by
xrdb during the initiation process for running X windows) explicitly set a user’s PVI display to the
defaults for a 1152x900 X display. The user may modify those characteristic as desired.

PVI.foreground:white
PVI.background:black
PVLgeometry:578x450

4-6 Army Research Laboratory Supercomputer Facility - AF’G, MD

Introductory User Guide - May 1993 On-Line Information

5. On-Line Information

This chapter provides an introduction to the ARLSCF on-line information and help sources. Boldface
indicates information to be taken literally or, in a representation of screen output, something typed in by
the user. Italics indicate something to be replaced with actual values by the user, operating system, or
software in use; for example, prompt> denotes the system prompt and indicates that prompt will be
replaced by the given system’s name or by some other prompt specified by the user.

5.1 Manual Pages

All computers at AR.LSCF have on-line copies of the various UNlX user manuals, referred to as “man
pages.” They provide information about system utilities and user commands. To view a man page, enter
man command.

For example, Figure 5.1 is an extracts of the information obtained in response to entering man jove.
Note that output on the various ARLSCF computers may differ slightly in format and even content.

JOVE(1B)

NAME

UNIX Programmer’s Manual JOVE(1B)

jove - EMACS style screen editor

SYNOPSIS
jove [-t tagname] [+line] [file1 file2 . . .]

DESCRIPTION
JOVE is an interactive display oriented editor which allows one to modify text easily. JOVE stands
for Jonathan’s Own Version of Emacs. This editor is modeled after the EMACS written at MIT by
Richard Stallman. JOVE has tried to stick to the conventions of real EMACS, _...

Figure 5.1. Extract of man jove Output.

On the minicomputers, except in the System V environment, man’s output is automatically piped through
more to control scrolling; press the space bar to view the next page. In the System V environment, man’s
output will scroll down the screen right to its end; to control this scrolling, pipe man’s output through
more (e.g., man jove 1 more) or toggle your terminal’s scrolling stop/restart characters (usually
CTRL-S/CTRL-Q).

On the Crays, man’s output is automatically piped through pg to control scrolling; press return to view
the next page.

Both more and pg provide a repertoire of command line options and interactive commands to control
their detailed behavior. Once in more or pg, interactive commands are available to scroll certain
numbers of lines, search for certain strings, and in pg, to scroll backwards. Read these commands’ man
pages for additional information.

Using the man command presumes that one knows the name of the command of interest. This is not
always the case. Use man -k keyword or apropos keyword to determine which commands provide

Army Research Laboratory Supercomputer Facility - APG, MD 5-l

On-Line Information Introductory User Guide - May 1993

certain functionality. keyword is selected in the usual ways useful for keyword searches. Once a likely
command is identified, use man command to obtain additional information thereon.

On the minicomputers, man’s output can be converted to a normal ASCII file by piping it through col;
for example:

man command [co1 -b -f > filename

5.2 Public Information Directory

All the ARLSCF computers have a public directory, /usr/pub, which contains information of value to
the general user community. The information and files containing it vary from one machine to another,
but the following are typical:

manuals only on the Crays; a list of Cray manuals currently available
notd notice of the day (current information about the Crays)
notd.bob month-long log of bob’s schedule (down time, test time, etc.)
notd.patton month-long log of patton’s schedule (down time, test time, etc.)
readme.queues two page summary of the available NQS queues (general information and use)
sys-admin list of system administrators

One way to obtain this information is to execute:

more /usr/pub/filename

5.3 explain

Available only on the Crays, explain displays an explanation for many error messages, particularly for
errors arising from the use of cff7, cdbx, and the Fortran and I/O libraries. The syntax is:

explain groupcode-errornumber,

where groupcode-errornumber is the more cryptic error message provided upon occurrence of the error.
Figure 5.2 presents a sample explain session. Keyboard entries are emboldened. . indicates a RETURN.

5.4 docview

Available only on the Grays, docview provides on-line access to a great deal of documentation. It is more
extensive in its coverage of some areas, such as Fortran, than the man pages, but does not yet cover all
areas of interest. Inexperienced users should use the docview menu to review the list of documents avail-
able under docview. A particularly useful menu choice is f string. Execute man docview to obtain
additional information. Figure 5.3 presents a sample docview session. Keyboard entries are emboldened.
. indicates a RETURN.

5-2 Army Research Laboratory Supercomputer Facility - APG, MD

Introductory User Guide - May 1993 On-Line Information

prompt> cf77 tryit.fa
cft77-33 cf77: ERROR

Unable to read file - tryit.f.
cft77-25 cf77: 1 CFT77 control statement errors occurred.
cft77-26 cf77: Compilation aborted.

prompt> explain cft77-330

ERROR: Unable to read file - name

The operating system was unable to read from the source input file or from the inline file. This
usually occurs when there is no file with the specified name or when the file’s read permission is not
set properly.

For more information, read about compiling in the CF77 Compiling System, Volume 1: Fortran
Reference Manual, Cray publication SR-3071.
prompt>

Figure 5.2. Sample explain Session.

****$I

prompt> docviewo

DOCVIEW
On-line Documentation System Command Menu

Please enter a command at the menu> prompt.

a[list]
c[list]
d[list]
f [ind] [string]

List docnames in alphabetical order
List docnames by subject category
List docnames by date last submitted
Find keywords and corresponding docnames
associated with “string”
Return to the previous command mode
View passage “keyword” in document “docname”
Write passages specified by “docname”
and “keywords”

p [revious]
v[iew] [docname] [keyword]
w[rite] [docname] [keywords]

h[elp] [topic]

m[enu]

q[uitl

Display help for the current screen
or a Docview topic or command
Display this menu
Quit from Docview

Enter “help quick” for a quick look at how to use Docview
menu> q*
prompt>

Figure 5.3. Sample docview Session.

Army Research Laboratory Supercomputer Facility - APG, MD 5-3

On-Line Information Introductory User Guide - May 1993

5.5 Electronic Mail

Electronic mail (email) provides a good source of on-line information and help. By sending a mail message
to support, which is monitored by many people at ARLSCF, the user can obtain information and assis-
tance on questions concerning either the Crays or the minicomputers. It is important that the message

specify the computer to which the question or problem pertains. By sending a mail message to craysup-

port, the user can obtain information and assistance on questions concerning the Crays. Responses from
either address are almost always obtained within a few days, and usually within a few hours.

5.5.1 Email on ARLSCF Non-Cray Machines

Execute man msg and man send for detailed information about the mail system. Figure 5.4 illustrates

sending a message to support. Because the user wishes merely to send a message, he invokes only the
send subsystem of msg. The session includes a request for help and the mail system’s response. Key-

board entries are emboldened, and l indicates a RETURN.

prompt> send.

SEND (6 Dee 1988 Update #32)

To: support*

cc: .

Subject: user’s short descriptive title*

Type message; end with CTRL-D...

user’s message
CTRL-DCommand or ?: ?*

bee

bye
check spelling

delete body
edit body (using editor)

vedit body (using veditor)

file include

header edit

input more body

program run

quit

review message

send message

set [option] [option value]

Command or ?: se

support@ARL.ARMY.MIL: address ok

Message posted.

prompt>

Figure 5.4. Sending a Message to support

Figure 5.5 illustrates an invocation of msg, which is required if anything more than sending is to be done,

and which permits send subsequently to be invoked.

5-4 Army Research Laboratory Supercomputer Facility - A_F’G, MD

Introductory User Guide - May 1993 On-Line Information

prompt> msg.

MSG (9 May 1989 Update #32) Type ? for help.
Loading binary box /other/joe/.-mailbox 37 messages total.
<- ?
Command Summary -- Type only the first letter of a command

MESSAGE HANDLING:
Answer [message #(s)]
Forward [message #(s)]
Send (compose) a new message
Type [message #(s)] ont.o terminal
Delete [message #(s)]
Undelete [message #(s)]
Keep [message #(s)]
Y-Resend [message #(s)]
Z-Two window answer

NAVIGATION:
Backup to prev msg & type it
Next message & type it
Headers of [message #(s)]
Go to message #
Current message # is typed

/-same as den

FILE HANDLING: MISCELLANEOUS:
Exit and update -- normal exit Jump into sub-Shell
List [message #(s)] into text file Xtra user options
Overwrite old file : current date and time
Put [message #(s)] into msg file ; ignore rest of line
Quit -- fast exit @ Undigestify
Read another msg file ! sub-Shell
Move [message #(s)] into msg file & mark as deleted

Examples of message #(s are: 42 l-4 2,5,7-. l-5,7-@ c 32-s)
<-

Figure 5.5. An Invocation of msg.

5.5.2 Email on patton and bob

There are two distinct mail systems on the ARLSCF Crays. Neither will accept incoming mail from any
other machine. The Cray Research Inc. mail permits mail to be sent to accounts on the originating Cray
and to accounts on other machines which are not ARLSCF Grays. The UNIX msg and send are useful
only to send mail from the Cray to accounts on other machines which are not ARLSCF Crays. The
Cray-2 can communicate only with machines on its classified net.

Cray Research Inc. mail can send email to accounts on the originating Cray and to accounts on other
machines. For local mail on a Cray, a user name suffices as an address. For outgoing mail, the address
must be of form user@nodename. For example, to send from the Cray X-MI’ to user joe who receives
mail on one of the ARLSCF minicomputers (keyboard entries are emboldened, and . indicates a
RETURN):

patton> mail joe@arl.army.mil*

user’s message

CTRL-Dpatton >

Army Research Laboratory Supercomputer Facility - APG, MD 5-5

On-Line Information Introductory User Guide - May 1993

To send a preexisting file:

patton> mail joe@arl.army.mil<filename.

patton >

The UNIX-style send can be used only to send mail from the Cray to other machines which are not

ARLSCF Crays. No send mail is automatically dispatched from the Cray; any user must execute

/usr/mmdf/deliver -w -cbrlnet,smtp

to cause all send mail accumulated to that point to be dispatched. The msg and send manual pages are

not available on the Crays.

5.5.3 Email and File Transfers

In general, email should not be used for file transfers. This is especially important for large files, and for

transfers involving a Cray, because such activity can overload a machine’s /usr file system. The NQS (see

the chapter, “Batch Jobs”), invoked by the qsub command, provides a number of options and defaults to
send information to the originating or other user at certain points during processing of the submitted job.
At the ARLSCF, these transfers are accomplished through the email system; therefore, the user must not

permit large amounts of information to be so transmitted. rep and ftp (see the chapter, “File Transfers”)
are the proper and efficient commands to effect file transfers.

5-6 Army Research Laboratory Supercomputer Facility - AF’G, MD

Introductory User Guide - May 1993 File Storage - On- and Off-Line

6. File Storage -
On- and Off-Line

At the ARLSCF, disk space is limited, but new files are always being created. Therefore, some mechanism
for “recycling” disk space is necessary. In addition, a mechanism to maintain backup copies of files is
necessary in order to recover from losses due to system problems and inadvertent destruction by users.
With the exception of file migration and t3480 archiving, the following mechanisms are available on all
ARLSCF computers; file migration and t3480 archiving are available only on the Crays.

0 file compression
l file migration
l /usr/tmp and /tmp directories
a user action
. users’ own tape archives
. system backups

Details vary from one machine to another and are best obtained from the man pages and by discussion
with a particular machine’s system administrator, using email. Detailed information herein applies
specifically to the Crays.

6.1 File Compression and Decompression

compress filename produces file j2ename.Z which, typically, is only 40% to 60% as large as the original.
uncompress filename.Z restores a compressed file to its original form. compress requires that sufficient
space be available for the compressed and uncompressed files to coexist. Upon successful completion, the
original file is removed. Without filenames, both commands can appear in pipes, eliminating the need for
both forms of the file to coexist. These commands are recommended over pack filename and unpack
ji1ename.e (note the lower case z) because they execute more quickly, achieve greater compression, and can
be used in pipes.

6.2 File Migration

The UNICOS data migration facility attempts to maintain availability of disk space on the ARLSCF Cray
computers by moving selected files to off-line media (at the ARLSCF, tape). Files which are migrated are
still catalogued in their original directories, but the files themselves are no longer on-line.

62.1 Operation of System Initiated Migration

When a file system’s free space falls below a critical level, file migration is initiated. Candidate files are
those older than 1 day, larger than one block (4096 bytes, 512 words), and not exempted from migration
(see .keep file in the following section, “User Interface... “). Within those constraints, files will be copied
to tape (two copies for reliability) and deleted from disk, largest and oldest files first, until a certain
amount of disk free space is restored.

Army Research Laboratory Supercomputer Facility - APG, MD 6-1

File Storage - On- and Off-Line Introductory User Guide - May 1993

6.2.2 Pros of File Migration

File migration frees disk space, allowing computer operations to continue.

File migration is completely transparent, except that a user

. can determine whether a file has been migrated (Is -1 displays m rather than - in the leftmost
column when a file is migrated).

l can explicitly force particular files to be migrated and recalled.
0 may experience delays in program execution/interactive response.

6.2.3 Cons of File Migration

The system can be costly to operate, in terms of reduced system responsiveness and use of assets (tape

drives) when a migration is being done, when migrated files are being recalled, and when the migration

database and tape library are maintained and consolidated.

Consider the effect of introducing into a user file system (e.g., /other, /amsaa) a file sufficiently large

that migration is triggered. Files are migrated as indicated previously. The migration itself increases

overhead and ties up tape drives. Of the files which migrate, users will recall those which are needed,

further increasing system overhead and tying up additional tape drives. The larger the migration library

and databases, the worse will be the increases in overhead. Furthermore, it is the larger files which are

migrated; when a sufficient number of them are recalled, migration will again be triggered. It has hap-

pened (infrequently) in the past that a particularly vicious cycle is entered, wherein little but migration

and recall occur. Some solutions to these problems are discussed in the following paragraphs.

Each file in a file system requires an inode, wherein is kept information permitting the operating system to

find that file on demand. There are only a certain number of inodes; thus a large number of small files
could “fill” a file system, even though adequate disk space remain. File migration is not triggered by run-

ning out of inodes, nor does its operation reduce the number of inodes in use because migrated files are still
catalogued in their original directories.

6.2.4 Current Status of the File Migration System

To ensure reliability, two copies are kept of every file migrated.

Currently, the ARLSCF migrated file library consists of approximately half a terabyte of information, con-
stituting approximately a third of a million files stored on approximately 3000 tapes. The number of files

held in migration and the number of tapes used to hold those files continue to grow. The larger the
number of migration tapes, and the greater the number of files in the migration database, the less
efficiently the migration software operates. In addition, there is a limit the the number of migration tapes

which can be maintained, due simply to space available.

Periodically, a reconciliation of files known to the migration database against files on-line and on tape is
required. Periodically, the entire pool of migration tapes must be merged to eliminate space wasted by
partially filled tapes, files deleted by users but still on tape, and multiple copies of files. These actions con-
sume significant amounts of computer time and other assets.

6.2.5 User Interface with the File Migration Facility

To determine if a file is migrated, execute Is -1. A migrated file will display an m in the leftmost position

of the output.

To exempt certain files from migration, create in your home directory a file named .keep, and in that file

place, left-adjusted, one per line, the full path name of each file to be exempted. The files named in .keep,

6-Z Army Research Laboratory Supercomputer Facility - APG, MD

Introductory User Guide - May 1993 File Storage - On- and Off-Line

starting with the first, and continuing up to but not includin, q the file which exceeds a certain limit, are
exempted from system initiated migration. Currently, the limit is 2000 blocks, a block being 4096 bytes or
512 words.

To cause specific files to be migrated, execute dmput filenames. DO not use migration as an
archival system. A legitimate and beneficial use of dmput is to cause migration of files which are too
new to be migrated automatically and which are large enough to be significant contributors to the need for
migration. When this is not done, such files may cause the migration of many other files. In turn, their
migration, subsequent recalls, and contribution to resource consumption during migration library and
database maintenance are the prime contributor to poor system response and large overhead. In a worst
case, there can be so many requests for files from the migration library, and additional migrations gen-
erated as their restorations consume file system space, that the system essentially comes to a standstill.
See also the following section, “/usr/tmp and /tmp Directories.”

To recall a migrated file, execute dmget filenames (execute man dmget for additional information).
This is an explicit recall and can conveniently be executed in background to avoid waiting while the files
are recalled.

Migrated files can be recalled implicitly by attempting to access them (e.g., cat filename). Implicit recalls
ultimately generate equivalents of dmgets, one for each implicit recall. If more than one file is to be
recalled, it is much more efficient to explicitly use one dmget with the entire list of files. The dmmode
command modifies the system’s response to an implicit recall. dmmode 0 sets a user’s environment so
that an implicit recall will be rejected and the message filename: File off-line, no automatic retrieval

issued. dmmode 1 sets a user’s environment so that an implicit recall is honored and a delay ensues while
the file is recalled. The dmmode command typically is placed in a user’s .profile, .cshrc, or .tcshrc file.
The system default is dmmode 1.

When a file is recalled, explicitly or implicitly, in foreground, there is a delay while the database is
searched, the tape obtained and mounted, and the file read in. These delays can be quite short, but are
very strongly influenced by the level of activity of the migration system (especially when there is conten-
tion for resources) and by the availability of operators.

6.3 /usr/tmp and /tmp Directories

Unlike “normal” user directories, /usr/tmp and /tmp are available to all users and are not subject to
file migration. As indicated by their names, they are intended to hold files temporarily - 4 days in
/usr/tmp on the Cray X-MF’, 14 days in /usr/tmp on the Cray-2, and until the next reboot in /tmp,
unless the directories fill up, in which case files must be removed. Every effort is made to contact owners
of those files before they are removed.

The advantage of using these directories is that large files placed therein do not trigger migration. Files
can be archived from these directories.

6.4 User Action

User directories can reach a critically low free space condition, triggering migration, which reduces system
responsiveness. In addition, migration occurs frequently enough that the migration library and its data-
base are already almost twice as large as ARLSCF staff had ever imagined they could become. They con-
tinue to grow. This causes difficulty for everyone, especially users, who occasionally suffer very long waits
to recall files. In addition, library and database maintenance, while infrequent, consume resources: library
tape merges degrade responsiveness, and reconciliation of the database and library with each other and
with on-line file systems requires dedicated time.

When a user operates in such a way that his own files are not migrated, he benefits himself in that his
computer activity is never delayed by (occasionally long) waits for the recall of his own migrated files. In

Army Research Laboratory Supercomputer Facility - APG, MD 6-3

File Storage - On- and Off-Line Introductory User Guide - May 1993

addition, he benefits the entire system because there is no increase in overhead due to the migration and

recall of his own files. Finally, he benefits the entire system because the migration database and library

remain smaller than would be the case, were his own files migrated.

The migration system is not, and does not operate well as, an archival system. By far the best, and a
highly efficient, solution to the problems associated with data migration is for users to realize that their

files consume scarce and valuable assets, even when they are migrated, and to act accordingly:

l Remove files (rm, rm -r), including migrated files, which are no longer needed. Removal of

migrated files will be especially beneficial to the migration facility, which contains many files not
accessed for very long times, because it reduces the sizes of the database and of the library.

l Archive on-line files (see the following section, “Archives”) which are infrequently used, but of con-
tinuing value, and then remove (rm) them from disk.

l Archive large on-line files (see the following section, “Archives”) even if they are frequently used,

and then remove (rm) them from disk.

l Archive already migrated files, and then remove (rm) them from disk. (see the following section,

“Archives”). Do not perform this action without first contacting the ARLSCF support staff because

the attempt to be a “good computer citizen” may be counterproductive. Every migrated file being
archived will first be recalled, thus reducing responsiveness and consuming disk space which may
trigger other file migrations. Special techniques avoiding these problems are available to the sup-

port staff.

l Create, recall from archive, and recall from migration+ large files++ into /usr/tmp and /tmp
because these directories are not subject to migration.

6.5 Archives

There is no system archiving facility at the ARLSCF. There are, however, several utilities available for
users to create, use, and maintain their own personal archives on tape. The user may choose to keep the

tapes physically in his possession, or the ARLSCF staff will keep the tapes in environmentally controlled

areas convenient to the appropriate computers. Cray-2 tapes, all of which are presumed to be classified

until certified otherwise, may not be removed from that site without prior coordination with ARLSCF

staff.

Because users’ personal archives invariably are small (at least in comparison to the migration library),

there is no need for elaborate database-driven schemes to access files, nor for elaborate tape merging and

reconciliation schemes to maintain the archives. In addition, users are able to commit to tape and remove

from disk their own files according to schemes which are more rational and usage driven than all-purpose

schemes like the one used by file migration.

The utilities used for archiving are available to users to copy files to tape for transmittal to other loca-

tions, and also to read tapes received from other locations. ARLSCF staff members are available for assis-
tance. Because there is such a wide variety of logical and physical tape formats, it is good practice to dis-
cuss intermachine tape transfers with ARLSCF staff.

tt

Users can recall migrated files only into the directories from which they were migrated. Depending on file system status, however,
even the momentary introduction of a large file into a file system can trigger migration. AFtLSCF support staff can recall
migrated files into other than their original directories, and will be pleased to assist in the recall of large files from migration into
/tmp or /usr/tmp.
How large is “large?” File system migration is triggered when free space on a file system falls below 30% of its total size. There-
fore, users dealing with large files ought to compare file sizes to file-system-free-space minus .3+file-system-total-size, to determine
if recalling a particular file will definitely or probably trigger migration. The Is -1 command displays file size in bytes. The df
-t command displays file system total and free space in blocks, a block being 4096 bytes.

6-4 Army Research Laboratory Supercomputer Facility - APG, MD

Introductory User Guide - May 1993 File Storage - On- and Off-Line

6.5.1 t3480

Available only on the Crays, and ultimately invoking cpio, t.3480 is a UNICOS shell script which
reads/writes files to/from multiple volumes of IBM 3480 cartridge tape(s). Each cartridge holds approxi-
mately 200 megabytes of information. These cartridges are recommended for archiving Cray files and for
file transfer between the two Crays, but not for transmittal of files to other locations. Usually, these car-
tridges are not released into users’ possession.

The user maintains his own audit of his archive. To assist in this maintenance, t3480 appends a descrip-
tive log of all its tape writes (except when -T is specified) in the file .tapelog in the user’s home directory.
Do not let this file grow too large (or else, enter it into .keep; see the preceding section, “File Migration”),
lest it be migrated and thus delay t3480. When writing, t.3480 first writes the tape, then rewinds and
reads it, making entries in .tapelog. Absence of expected entries in .tapelog indicates some failure in the
writing process. t3480 writes or overwrites, but does not append, tapes.

Usage of t3480:

t3480 -r 1-w 1-n 1-t [-T] --v vol [fires]

-r read fifes from the cartridges and write them to disk, creating directories and subdirectories as
needed, overwriting files with the same path names as files read.

-w writes files to previously written cartridges, which already have physical and logical labels,
Overwrites all existing data.

-n

-t

-T

writes files to new cartridges, which have neither physical nor logical labels.

writes to standard output a list of the files on the cartridges.

modifies the action of -r 1-t to read or catalogue a logically unlabeled tape, and of -w 1-n to
write or overwrite a physically and logically unlabeled tape (a new tape). Only one cartridge
is processed, so writes cannot be for more than 200 megabytes. Useful with tapes from/to
another machine. Because of security considerations, creation of tapes intended for transfer
from ARLSCF’s Cray-2 requires prior coordination with ARLSCF staff.

-v uol vol is the user-supplied portion of the g-character tape label: 3 letters (t3480 converts lower
case to upper case) and digits. t3480 provides 1 character identifying the host machine, 2 two
digits specifying the cartridge count.

files If no files are listed, all files and subdirectories in the current directory are written to or read
from the tape. t3480 expands UNICOS wild card characters such as * and ?.

Examples:

l Write files abc and def on new cartridges on patton.arl.army.mil:

t3480 -n -v 123 abc def

The resulting label is W12301. Both files fit on one tape; W indicates a cartridge made on patton.

l Overwrite all files in directory work and its subdirectories on previously used tapes labeled
WZBCOl, WZBCOZ, . . . (unneeded tapes become unreadable):

cd work
t3480 -w -v ZBC

l Restore the directory work, but as directory play;

cd $HOME
mkdir play
cd play
t3480 -r -v ZBC

Army Research Laboratory Supercomputer Facility - AF’G, MD 6-5

File Storage - On- and Off-Line Introductory User Guide - May 1993

6.5.2 tar and cpio

tar and cpio can be used to save/restore (multiple) files and directories to/from tape. They are particu-
larly useful for saving multiple files and directories on the same tape, tar providing an option-selectable
append capability. These facilities are of value to users whose needs are not met by t3480, particularly
when tapes are created for transfer to other machines (except that t3480 is preferred for transfers between
the ARLSCF Crays), and to users who choose to deal with tapes on machines other than the Crays, even
when they are dealing with Cray files. For detailed information, execute man tar or man cpio.

6.6 Tape Usage

The preferred method for reading/writing tapes on the ARLSCF Crays, for the maintenance of archives,
and for transfer between the Crays, is t3480.

For other purposes, tapes containing Cray files are found by some users to be more conveniently
read/written on other ARLSCF machines (minicomputers, workstations, etc.), or on machines at other
sites. Typically, these users make use of rep or ftp to transfer the files of interest to/from the “other”
machine, and tar or cpio to read/write the tape. Such methods require the user to consider how the tapes
physically will be mounted on the desired machine.

The remainder of this section is intended for users who choose to read/write tapes on the ARLSCF Crays
by means other than t3480. The Cray Tape Controller requires that a setup procedure be followed when-
ever tapes are used on the Crays (this procedure is built into t3480).

The ARLSCF provides two types of tape drive, the IBM 3420 (round) and the IBM 3480 (cartridge).
Before a drive can be accessed, rsv TAPE or rsv CART must be executed to reserve a tape resource,
round or cartridge, respectively. A user must not execute rsv when he has already reserved resources; rls
-a releases all of a user’s resources. If the requested resource is not available, or if resources are already
reserved, an error message is issued. Once the rsv has been successful, the user executes a tpmnt, which
requests the operator mount a tape on a drive, provides additional information to the tape subsystem, and
creates a user-named file in /tmp. Finally, the user executes a command to read/write from/to that
/tmp file which acts as an image of the tape. It is important that the user execute rls -a upon comple-
tion, else the resource remains unavailable to other users. For detailed information on rep, ftp, tar,
cpio, rsv, rls, and tpmnt, execute the man command.

For example, to display a lGO0 bpi (bits per inch) round tape’s contents on the monitor:

rls -a
rsv TAPE
tpmnt -g TAPE -d 1600 -p /tmp/scratch -v VOLl -I al
cat /tmp/scratch
rls -a

For example, to use tar to write the entirety of directory abc to a cartridge tape:

rls -a
rsv CART
tpmnt -g CART -b 4096 -p /tmp/cart -v VOLl -1 al
tar cvbf 8 /tmp/cart abc
rls -a

Some other commands of interest when using tapes are:

tpstat display the status of all tape devices.
msgi send an informative message to the operator.
msgr send an informative message to the operator and require acknowledgement.

6-6 Army Research Laboratory Supercomputer Facility - APG, MD

Introductory User Guide - May 1993 File Storage - On- and Off-Line

For additional information, see the Cray publication, UNICOS Tape Subsystem
6.0.

6.7 Backups

All publicly accessible machines at the ARLSCF are incrementally backed up to tape. One copy is made,
during low-use hours at night. In general, all user directories are backed up. In general, a level 0 backup

UserIs Guide, SG-2051

(all files) is done monthly; level 1 (all files with mod dates later than the level 0), weekly; and level 2 (all
files with mod dates later than the level I), daily.

On the Cray X-MP, backups are done on the first Sunday, every other Sunday, and every other day,
respectively. Level 0 tapes are retained for 3 months, and levels 1 and 2, for 6 weeks. In addition,
/usr/tmp is level 0 backed up daily, and the tapes retained for 4 days.

On the Cray-2, backups are done on the first Thursday, every other Thursday, and every other day,
respectively. Level 0 tapes are retained for 3 months, and levels 1 and 2, for 6 weeks. In addition,
/usr/tmp is level 0 b ac e k d up infrequently, on an ad hoc basis and by special arrangement.

In general, on the minicomputers, backup tapes are retained for 3 months (level 0) and 4 weeks (levels 1
and 2). For specific details on a particular minicomputer, contact its system administrator by email.

Army Research Laboratory Supercomputer Facility - APG, MD 6-7

File Storage - On- and Off-Line Introductory User Guide - May 1993

Intentionally Left Blank

6-8 Army Research Laboratory Supercomputer Facility - APG, MD

Introductory User Guide - May 1993 File Transfers

7. File Transfers

This chapter presents several methods for transferring files among computers at the ARLSCF, or between

other sites and the ARLSCF. The transfers are electronic over a network or manual by physically tran-

sporting tapes. More complete discussions of the techniques can be found in the on-line manual pages (dis-
cussed in the “On-Line Information” chapter of this document) on ARLSCF computers.

7.1 Electronic Transfers

Electronic file transfers can be effected by using ftp, rep, or kermit. These utilities can be used among
machines at the ARLSCF, and between the ARLSCF and other sites.

Electronic mail may be used to transfer files, but it is inefficient for this purpose, and large files will

severely burden the mail system.

7.1.1 ftp

ftp (file transfer protocol) permits file transfers among diverse machines running diverse operating sys-

tems. It is interactive and has on-line help. Because of its extensive command repertoire, it provides con-

siderable flexibility in the transfer of files. Many sites (but not ARLSCF) provide a “guest” account (login
name: anonymous) so that users with no account on the remote machine can still copy files therefrom.

Figure 7.1 presents an example wherein ftp is used to transfer file joefile from adm.arl.army.mil to

patton.arl.army.mil. User joe is executing ftp on adm and has an account on patton. Keyboard

entries are emboldened. . indicates a RETURN.

prompt> ftp patton.arl.army.mil*

Connected to patton.arl.army.mil.

220 patton FTP server (Version 5.2 Fri Sep 7 14:09:58 CDT 1990) ready.

Name (patton.arl.army.mil:joe): joem

331 Password required for joe.

Password:vser enters password, not echoed to screen*

230 User joe logged in.

ftp> put joefile.

200 PORT command successful.

150 Opening ASCII mode data connection for joefile.

226 Transfer complete.

local: joefile remote: joefile

532 bytes sent in 0.048 seconds (11 Kbytes/s)

ftp> bye*

221 Goodbye.

prompt>

Figure 7.1. ftp File Transfer.

Army Research Laboratory Supercomputer Facility - APG, MD 7-l

File Transfers Introductory User Guide - May 1993

For a transfer in the opposite direction (patton to adm, user still executing ftp on adm), the only

difference in the user’s actions would be to enter get rather than put. In certain cases, the user can abbre-

viate the remote machine name. In the example, patton.arl.army.mil could have been abbreviated to

patton.

Figure 7.2 shows a list of ftp commands obtained from within ftp by typing help or ?. . indicates a

RETURN. Descriptions of these commands may be obtained by executing man ftp.

prompt> ftp*

ftp> ?.

Commands may be abbreviated. Commands are:

$
account

append

ascii

bell

binary

bye
case

cd

cdup

close

ftp> bye*

prompt>

cr

delete

debug

dir

disconnect

form

get
glob

hash

help

led

1s

macdef

mdelete

mdir

mget

mkdir

mls

mode

mput

nmap

ntrans

open

prompt

proxy
sendport

Put

pwd
quit

quote

recv

remotehelp

rename

reset

rmdir

runique

send

status

struct

sunique

tenex

trace

type
user

verbose

?

Figure 7.2. ftp Help Screen

7.1.2 rep

rep (remote copy utility) is the most convenient way to transfer files among UNIX machines, but it is not

nearly so flexible as ftp. There must be an appropriate .rhosts file in the user’s home directory on the
remote machine. A .rhosts file contains a list of the names of machines from which the remote machine

might be addressed, one name per line, each beginning in column 1. For example, to perform as in the ftp
example, but using rep, user joe would have a .rhosts file in his home directory on patton, containing at
least the line

Entering

adm.arl.army.mil

rep joefile patton:joefile

has exactly the same effect as the ftp example, and the circumstances of its execution are exactly as in that
example, with the addition that user joe has an appropriate .rhosts file in his home directory on patton.

Were the desired transfer to be in the opposite direction (patton to adm, user still executing rep on adm),
the user would enter

rep patton:joefile joefile

In short, the original file is always the first argument, and the copy of the file, the second. Whichever is on
the remote machine is prefixed with the name of that machine and a colon. Either file name may be

7-2 Army Research Laboratory Supercomputer Facility - AF’G, MD

Introductory User Guide - May 1993 File Transfers

replaced with a full path name or a relative path name - relative to the current directory on the local
machine, or to the user’s home directory on the remote machine. The copy file name may be replaced with
an existing directory name, in which event the copy of the file is placed in that directory with its original
name. The -r option specifies recursive use; that is, the original name specifies a subtree rooted at that
name, and the copy name specifies a directory which is created and into which is copied the subtree.

7.1.3 kermit

kermit is useful not only to transfer files, but also to enable the local computer to emulate a terminal on
the remote machine. The local and remote hosts may be of diverse types running diverse operating sys-
tems. In this role, kermit is particularly useful when the local machine is a PC, Macintosh, etc., and com-
municates over telephone lines using a modem. Establishing communications requires that the local ker-
mit be “set up” with parameters dependent upon the hosts and modems involved. Once kermit com-
munications are established, the local machine emulates a terminal connected to the remote host, whose
repertoire of commands can be executed. In particular, kermit can be invoked on the remote host and
commanded to send/receive files. An escape is then made to the local kermit, which is commanded to
receive/send files.

7.1.4 Electronic mail

In general, electronic mail (email) should not be used for file transfers. This is especially important for
“large” files, and for transfers involving a Cray, because such activity can overburden a machine’s /usr
file system.

The NQS (see the chapter, “Batch Jobs”), invoked by the qsub command, provides a number of options
and defaults to send information to the originating or some other user at certain points during processing
of the submitted job. At the ARLSCF, all these tranfers are accomplished through the email system;
therefore, the user must not permit large amounts of information to be so transmitted.

With awareness of the potential for problems, users can use email occasionally to transfer small files (less
than 1 megabyte) at the ARLSCF or between the ARLSCF and remote sites. Transfers of this sort are
only indirectly to a particular machine; rather, they are to a particular addressee and, in turn, to which-
ever machine is designated as the addressee’s mail receiver. This provides the convenience that the sender
need not consider whether he has an account on the target machine, nor whether he has the permissions
necessary to write the file at its destination, nor even what the destination ought to be.

7.1.4.1 Email Transfers Not Involving the ARLSCF Crays

Execute man msg and man send for additional information about the email system. Figure 7.3 illus-
trates sending a file in the current directory to user joe; were the file in some other directory, a full or rela-
tive path name would be needed. Because the sender wishes merely to send a message, he invokes only the
send subsystem of msg. The session includes a request for help and the mail system’s response. Key-
board entries are emboldened, and l indicates a RETURN.

Army Research Laboratory Supercomputer Facility - APG, MD 7-3

File Transfers Introductory User Guide - May 1993

prompt> send.
SEND (6 Dee 1988 Update #32)
To: joeo
cc: l

Subject: the file you wanted

Type message; end with CTRL-D...

CTRL-DCommand or ?: ?*
bee

bye
check spelling
delete body
edit, body (using editor)
vedit body (using veditor)
file include
header edit,
input, more body
program run
quit
review message
send message
set (option] [option value]
Command or ?: fo
File: filename*

. ..included
Command or ?: so
joe@ARL.ARMY.MIL: address ok
Message posted.

prompt>

Figure 7.3. sending a Message.

7.1.4.2 Email Transfers Involving the ARLSCF Crays

There are two distinct mail systems on the ARLSCF Crays. Neither will accept incoming mail from any
other machine. The Cray Research Inc. mail permits mail to be sent to accounts on the originating Cray
and to accounts on other machines which are not, ARLSCF Crays. The UNIX msg and send are useful
only to send mail from the Cray to accounts on other machines which are not ARLSCF Crays. The
Cray-2 can communicate only with machines on its classified net.

Cray Research Inc. mail can send email to accounts on the originating Cray and to accounts on other
machines. For local mail on a Cray, a user name suffices as an address. For outgoing mail, the address
must, be of form user@nodename. For example,‘to send from the Cray X-W to user joe who receives
mail on one of the ARLSCF minicomputers (keyboard entries are emboldened, and l indicates a
RETURN):

patton> mail joe@arl.army.mil*
user’s message

CTRL-Dpatton>

7-4 Army Research Laboratory Supercomputer Facility - APG, MD

Introductory User Guide - May 1993 File Transfers

To send a preexisting file:

patton> mail joe@arl.army.mil<fi~ename*
patton >

As an aside, note that assistance can be requested of craysupport with the address
craysupport@arl.army.mil.

The UNM style send can be used only to send mail from the Cray to other machines which are not
ARLSCF Crays. No send mail is automatically dispatched from the Cray; any user must execute

/usr/mmdf/deliver -w -cbrlnet,smtp

to cause all send mail accumulated to that point to be dispatched. The msg and send manual pages are
not available on the Crays.

7.2 Manual Transfers

In general, files can be transferred between machines and sites on g-track tapes. At the ARLSCF, such
tapes can be read and written with the dd, cpio, tar, and ansir (read only) utilities. We strongly recom-
mend that users who are not themselves expert in tape operations, and who wish to transfer files between
sites via tape consult with both the writing and the reading site support staffs before the tape is written.
When a g-track tape written elsewhere with utilities other than tar is to be read at the ARLSCF, the
requestor must be prepared to specify the details of the tape structure (e.g., block size, record length, label
information, mapping scheme).

Files can be transferred between certain machines and certain sites on IBM 3480 cartridge tapes. At the
ARLSCF, such tapes can be read and written with the t3480 utility, which invokes cpio with appropriate
options and issues other commands.

7.2.1 t3480

Available only on the Grays, and ultimately invoking cpio, t3480 is a UNICOS shell script which
reads/writes files to/from multiple volumes of IBM 3480 cartridge tape(s). Each cartridge holds approxi-
mately 200 megabytes. These cartridges are recommended for archiving Cray files and for file transfer
between the two Crays, but not for transmittal of files to other locations. Usually, these cartridges are not
released into users’ possession. Except when -T is used, t3480 will write across tape boundaries as neces-
sary to produce multivolume tape files. Detailed t3480 information is available in the man pages.

For example, the command

t3480 -n -v vsn -T filenames

specifies a new cartridge (which implies a write operation), with neither physical nor logical label (-n),
specifies the user portion of the tape label/volume name to be zlsn (-v), and specifies that the purpose of
the tape is to transfer files between the two ARLSCF Crays (-T). I n addition, the -T option suppresses
creation and update of the user’s .tapelog file and restricts the writing to a single cartridge. Replacing
-n with -r will read the resulting cartridge.

Reading and writing tapes always involves coordination with the machine operators or other support staff
members, if only to request that tapes be mounted (t3480 automatically issues such requests). When,
however, tapes are written to transfer files from the ARLSCF Cray-2, security considerations mandate
that the user communicate directly with support staff.

Army Research Laboratory Supercomputer Facility - APG, MD 7-5

File Transfers Introductory User Guide - May 1993

7.2.2 dd

The dd (data dump) program is the preferred utility for reading and writing tapes transferred between
sites. dd can read and write tapes in many different formats for compatibility with many different com-
puters and operating systems. More complete information is available in the man pages.

For example, on a minicomputer, the command

dd if=filename of=/dev/ rmt0 obs=1320 cbs=132 conv=block

writes file filename onto the tape on drive 0 with a block size of 1320 bytes (characters) and fixed length
records of 132 characters. To read that tape into file filename requires the exchange of the values associ-
ated with the if and of options, the replacement of the option name obs with ibs, and change of the conv
option value from block to unblock.

dd on the Crays does not support block/unblock conversion. If it is necessary to read/write dd tapes
using this feature with Cray files, we recommend those files be transferred to an appropriate minicomputer
and the tape operations be performed there. Another option is to obtain a program which can read and
write under under format control to convert between fixed length and variable length records, and use it in
conjunction with dd on the Crays. For example, on patton, the commands

rsv TAPE
tpmnt -1 nl -g TAPE -p tmp.tape.link -v eid -b 1320
pad < filename 1 dd of= tmp. tape.fink bs=1320
rls -a

write file filename onto an unlabelled tape with external identification eid. The tape is written with a
block size of 1320 bytes (characters). The result is the same as on the minicomputer, given that program
pad reads file filename one variable length record at a time, pads that record to 132 characters with
blanks, and then writes it to standard output. To read that tape into file filename requires the dd com-
mand line be replaced with

dd if=tmp. tupe.link bs=1320 1 unpad > filename

where unpad strips the trailing blanks from the fixed length records.

7.2.3 cpio

cpio is useful when the writing and the reading are both done on UNlX systems. cpio -0 reads from
standard input to obtain file names and writes those files to standard output. cpio -i reads from stan-
dard input information previously processed by cpio -0, extracts the individual files specified as argu-
ments (with shell expansion of metacharacters, default *), and places those files into the current directory.
More complete information is available in the man pages. We recommend that users not expert in tape
operations avoid cpio (except as invoked through t3480).

7.2.4 tar

tar (tape archive) is useful when the writing and the reading are both done on UNIX systems. Its use is
particularly convenient when an entire directory or subdirectory structure is to be written to or copied
from tape. More complete information is available in the man pages.

For example, on a minicomputer, the command

tar -c .

copies the entire subtree rooted at the current directory to the tape mounted on the default drive and

7-6 Army Research Laboratory Supercomputer Facility - APG, MD

Introductory User Guide - May 1993 File Transfers

tar --x .

restores that subtree, rooting it at the current directory. Ownership, group, permissions, and modification
times can be preserved or changed. Suffixing v to the option in either command makes the command ver-
bose.

On the Grays, tar operates similarly, but the tar command line must be augmented with other com-
mands, as is the case for dd (discussed previously).

72.5 ansir

ansir (ANSI read), not available on the Crays, reads ANSI labeled tapes. By default, it opens in interac-
tive mode, wherein the user is questioned about various characteristics of the tape. The user must know
the character set, record length, block size, and number of files on the tape.

Figure 7.4 depicts extraction of two files from a previously written tape, user entries being emboldened and
l representing a RETURN:

Army Research Laboratory Supercomputer Facility - APG, MD 7-7

File Transfers Introductory User Guide - May 1993

prompt> ansir /dev/rmtO

*** At file number 0:
VOLl-label missing

*** At file number 1:
HDRl-label missing
HDR2-label missing
Tape mark missing

I shall have to ask some questions; to get more information,
answer a question with a single question mark (?).

Please type your file name: prog23
Please type your character code: ASCII
Default record format: U
Please type a new record format, or press RETURN: l

Default block length: 32766

Please type a new block length, or press RETURN: l

Default buffer offset: 0
Please type a new buffer offset, or press RETURN: l

EOFl-label missing
EOF2-label missing
Tape mark missing

*** At file number 2:
HDRl-label missing
HDRB-label missing
Tape mark missing
Please type your file name: data23
Default character code: ASCII
Please type a new character code, or press RETURN: .
Default record format: U
Please type a new record format, or press RETURN: l

Default block length: 32766
Please type a new block length, or press RETURN: .
Default buffer offset: 0
Please type a new buffer offset, or press RETURN: l

EOFl-label missing
EOF2-label missing
Tape mark missing

**t At file number 3:
HDRl-label missing
HDR2-label missing
Tape mark missing
Please type your file name: CTRL-C
prompt>

Figure 7.4. Extracting Files from Tape.

7-8 Army Research Laboratory

Supercomputer Facility - APG, MD

Introductory User Guide - May 1993 Batch Jobs

8. Batch Jobs

This chapter presents an overview of the various methods for submitting batch jobs at the ARLSCF. The

greater portion of the chapter is devoted to the NQS, used to submit a batch job to one of the Crays from
that Cray. Other methods, such as interactive batch processing by executing in background, also are dis-

cussed briefly.

8.1 NQS

NQS is available only on the Crays. It permits submission of jobs exceeding the resource limits imposed
on interactive jobs, both synchronous and asynchronous. NQS jobs are automatically checkpointed before
intentional system shutdowns, thus allowing recovery when the machine returns. A detailed discussion of
NQS can be found in the on-line manual pages and in the Cray publications, UNICOS Primer, SG-2010
6.0, and UNICOS User Commands Reference Manual, 5X-2011 6.0.

8.1.1 The Queues

The qsub command is used to submit jobs into one of four queues:

express Intended for high priority jobs. Charged double the normal rate.

deferred Intended for low priority jobs. Charged half the normal rate. Receives little execution time
unless the system is idle.

debug Intended for short, quick turnaround jobs typical of debugging. Charged the normal rate.

crayque The default. Intended to contain the great bulk of jobs submitted. Charged the normal
rate. Jobs are automatically placed in subqueues based on the time and memory require-
ments specified in the job file. (Users can determine the memory required for a job by test-
ing the executable with the size command. See the size man page for detailed information.)

Rates are specified in Appendix A.

In general terms, the queue structures on both the Cray-2 and the Cray X-MI’ are the same, but their
specific characteristics reflect the hardware and usage differences of the two machines.

A job’s nice value influences its execution priority; the higher the value, the nicer it is to other jobs and,
hence, the longer it takes to complete, given that there is contention for system resources.

Army Research Laboratory Supercomputer Facility - AF’G, MD 8-l

Batch Jobs Introductory User Guide - May 1993

8.1.1.1 Gray-2 Queues

queue

express
deferred
debug
crayque

xsmall
small
medium
large
xlarge
huge

permanent file space (MW)

per process per request

512 512
unlim unlim

512 512

128 256
128 256
128 256
256 512

unlim unlim
unlim unlim

memory size (MW)

per process per request

224 unlim
224 unlim
224 unlim

4 4
8 8

64 64
128 256
224 unlim
224 unlim

nice CPU time (set)
both both

1 unlim
19 unlim

4 180

6 3600
6 5400
8 10800

10 72000
10 172800
10 unlim

8.1.1.2 Cray X-MP Queues

The express queue, as well as crayque, is split into subqueues. In addition, there may be special queues,
not available to the general user community, created for extraordinary circumstances. The deferred queue
and all 4 MW (actually, 3.6 MW) queues except debug execute only between 4 PM and 8 AM.

queue

express
express_2m
express_4m

deferred
debug
crayque

q2m_lOm
q2m_lh
q2m_2h
q2m_20h
q2m_unl
q4m_3h
q4m_2Oh
q4m_unl

permanent file space (MW) memory size (MW) nice CPU time (set)
per process per request per process per request both both

unlim unlim 2.0 2.0 1 unlim
unlim unlim 3.6 3.6 1 unlim
unlim unlim 3.6 3.6 19 unlim

512 512 3.6 3.6 6 180

128 256 2.0 2.0 6 600
128 256 2.0 2.0 8 3600
128 256 2.0 2.0 8 7200
128 256 2.0 2.0 8 72000
128 256 2.0 2.0 8 unlim
512 512 3.6 3.6 10 10800

unlim unlim 3.6 3.6 10 72000
unlim unlim 3.6 3.6 10 unlim

8.1.2 Submitting NQS Jobs

Users must specify memory and time requirements with options on the command line, or with the same
options on # QSUB lines at the beginning of the job file. The system uses these values for three purposes:

l To verify that a job may enter the specified queue.

l To place a job in the appropriate subqueue, if any. The subqueue selected is the first one encoun-
tered (in the order of the preceding tables) whose per-process and per-request limits are not
exceeded by job requirements.

. To place limits on the resources a job may consume during execution. Users should not merely
“guess high” to avoid being terminated during execution because so doing may result in long turn-

around times.

8-2 Army Research Laboratory Supercomputer Facility - APG, MD

Introductory User Guide - May 1993 Batch Jobs

8.1.2.1 Options - Security

The -u option permits a password to be supplied as part of the job. Do not use this option to provide a
password. Users are directed not to include any password on the qsub command line or in the job file.
Under no circumstances should any user ever enter any password into any file. The proper mechanism for
validation of an NQS submission is through a .rhosts file.

8.1.2.2 Options

There are approximately 30 options to the qsub command. A brief introduction follows; detailed informa-
tion may be found in the references already cited.

The following displays an NQS job file, and the command used to submit it on the Cray-2:

bob> cat subfile
QSUB-q crayque # submit file to crayque
&SUB-e0 # standard error to standard out
QSUB-lm 8mw # per-process memory limit
QSUB-1M 8mw # per-request memory limit
QSUB-lt 7500 # per-process CPU time limit
QSUB-1T 7500 # per- request CPU time limit

Qsm # end of QSUB parameters
cft77 test.f
segldr test.0
a.out
bob> qsub subfile
Request 16.bob submitted to queue: crayque.
bob>

The blank # QSUB request signals the end of the # QSUB section. Current versions of UNICOS will

recognize # QSUB lines beyond the blank one, but, starting with UNICOS 7.0, such a line will terminate
recognition of # QSUB lines. Some or all of the values provided on # QSUB lines could, instead, have

been supplied as options with arguments (and without the # QSUB) on the qsub command line. Most
users find it more convenient to use the # QSUB form. In the event that some value is specified on both

the qsub command line and in a # QSUB line, the value on the command line takes precedence.

“Per-process” and “per-request” limits both must be supplied. In general, lower case parameters pertain

to per-process limits and upper case, to per-request limits.

A job file submitted via qsub is interpreted and executed as a shell script, by default in Bourne shell. It is

important that normally other-than-Bourne-shell users provide an alternate (Bourne shell) environment
within which the submitted job can execute, or specify that the submitted job is to execute in the desired

shell. # QSUB -s I211f-path-name-of-she[l can be used to specify, from within the submitted job, the shell

in which the job is to execute.

The lim and limit commands should not be used in conjunction with NQS jobs because their behaviors

are not the same on both machines, and because limits have been imposed on the values which they may
specify. Values specified in this manner override earlier # QSUB values. On patton only, if lim is
invoked with a time larger than 10 CPU minutes, the system will terminate the job and send a timeout
message, even if # QSUB specified a longer time.

8.1.3 Monitoring NQS Jobs

NQS jobs may be monitored with the qstat command, which provides 16 options. Three of the more

popular usages are:

Army Research Laboratory Supercomputer Facility - APG, MD 8-3

Batch Jobs Introductory User Guide - May 1993

qstat displays the owner and status of each queue.

qstat -a displays the owner and status of each job.

qstat -f queue displays the limits associated with the named queue or subqueue. Nonpipe queue

information is more detailed than for a pipe queue.

qdel permits users to delete their own jobs from the queues. If the job is merely queued, qdel job-id is
sufficient. Once the job is running in the queues, qdel -k job-id is necessary. The man page discusses

additional options.

8.1.4 Restrictions

Because of high demand for limited computing resources, the following is ARLSCF policy. A single user
may have no more than two jobs per queue or subqueue per machine. A single user may have no more

than four NQS jobs running simultaneously per machine. On the Cray X-MP, the deferred queue and all

4 MW (actually, 3.6 MW) q ueues except debug execute only between 4 PM and 8 AM. Should an extraor-

dinary situation require exceptions to these restrictions, coordination with the system administrator is

necessary.

8.2 at, batch, and cron

at permits a user to submit a batch job to start at a certain time. batch permits a user to submit a batch

job into the MDQS queue. These commands are available on various ones of the ARLSCF computers, but
not to the general user community on the Crays.

The cron daemon runs continuously on UNIX machines, reading the file /usr/lib/crontab once per
minute and executing programs as indicated therein. Users do not have write permission to

/usr/lib/crontab.

In exceptional circumstances, users may discuss their needs to run programs under cron, and to use at and
batch on the Crays, with the appropriate system administrators.

8.3 Executing in Background

Suffixing a UNIX command with & causes the invoked program to run in background; i.e., asynchro-
nously. When the job is placed in background, the system immediately returns its process id and control

to the user, who may then proceed with additional interactive (synchronous) and background activity.

The system notifies the user as each background job is completed. The status of background jobs can be

checked with the ps and top commands, and they may be terminated with the kill command. Back-
ground jobs are terminated at system shutdown, and when the owner logs out. To avoid termination of
background jobs upon logging out, users should place the command nohup in their .profile or .login

files, or prefix the command with nohup:

nohup command-with-options-and-arguments-and-red~rect;on &

On the Crays, background jobs are considered by the operating system to be interactive, rather than

batch, jobs; hence, they are subject to the restrictions of interactive jobs. In particular, such jobs are lim-

ited to 10 CPU minutes each on the Cray X-MI’.

8-4 Army Research Laboratory Supercomputer Facility - APG, MD

Introductory User Guide - May 1993 Text Editors

9. Text Editors

This chapter discusses some of the text editors available on the ARLSCF computers. Extensive on-line
documentation is available and is not reproduced here. Users choosing to do their editing on machines

other than the Crays will often be rewarded with much more rapid response than the Crays offer.

9.1 Regular Expressions

Text editors typically provide a facility for finding a certain string of characters and then performing some
action. For example, in ed, s/u/b/ n substitutes b for the first occurrence of u on the current line and then
prints the line and its line number. In the same manner, I7s/hypefutectic/hypereutectic/gn corrects the
spelling of every occurrence of hypervtectic on line 17and then prints the line and its line number.
l,$s/hyperutectic/hyperezlfectic/gn corrects the spelling of every occurrence of hypervtectic throughout
the entire file, printing out the text line and line number for every line on which this occurs. Finally,
g/hyp.*tic/s//hypereutectic/gn changes every word beginning with hyp and ending with tic into hypereu-
tectic, printing out the text line and line number for every line on which this occurs. Unfortunately, it also
converts the line He was hyperactive and had a tic. into He was hypereutectic. The strings a, hyperutectic,
and hyp.*tic are examples of regular expressions. “.I’ and “*” are examples of regular expression meta-
characters, “.” meaning any character and “*” meaning any number of occurrences (including 0) of the
preceding character.

In the context of UNIX text editors, regular expressions are strings with their own syntax which represent
sets of other strings of almost any degree of complexity; thus, they provide UNIX editors with an
extremely powerful search capability. Detailed discussions of regular expressions are provided in the Cray
publications, UNICOS User Commands Reference Manual, SR-2011 6.0 (available on-line; execute man
ed), and UNICOS Text Editors Primer, SG-2050, in the entries for the ed editor. The various editors
respond to regular expressions in ways which may differ somewhat from each other. These differences are
documented.

Figure 9.1 presents some examples of regular expression matches. The regular expressions are shown with
their delimiters, and the matching strings are underlined. Comments are italicized.

9.2 ed

ed is the standard UNIX line oriented text editor. Like other line oriented text editors, it tends to be
inconvenient for most interactive uses; however, certain text editing tasks may lend themselves particu-
larly well to its use. Large files generate even larger editor temporary files and cost many processor cycles
on entry to ed. On the Cray-2, the buffer is limited to approximately 17 gigabytes and individual lines,
to 4096 characters; reasonable editing sessions should be kept under 10 megabytes. On the Cray X-MI’,
the buffer is limited to approximately 250 megabytes, and individual lines, to 512 characters. For addi-
tional information, execute man ed or see the Cray publication, UNICOS User Commands Reference
Manual, SR-2011 6.0. In addition, there is a tutorial in the Cray publication, UNICOS Text Editors Pri-
mer, SG-2050. Figure 9.2 is a demonstration of ed’s use on the ARLSCF Crays. There will be minor
(but perhaps disconcerting) differences between the Cray implementation and that on the minicomputers;
one such difference is that the minicomputer implementations do not provide help. Screen
responses/prompts are indented. Every keyboard entry line is followed by a carriage return; in a few
cases, 0 represents an explicit carriage return. “RE” means “regular expression.” Comments are

Army Research Laboratory Supercomputer Facility - APG, MD 9-1

Text Editors Introductory User Guide - May 1993

italicized.

/the/
//
/./
/\-/
/o*/
/o.. . .o/
/o.. . . .o/
/o.. ,o/
/o. *o/
/-*/
/o.\{4\b3/

/o.\-c5\b3/

/0.\{5>\~0/

/o-\{4\)/

/0.\{5\)/

/0.\{5>\)/

/*a*/

/a*$/

/*bb*/

/bb*$/

/*b*/

/b*$/

/[^a]*/

/[^a1 [^a]*/
/Pbl*/
/b4 bbl*/
/bbl*/
h-4 */
/\(a*\)\(b*\)c*\‘J\l/

The quick red fox jumped over the lazy brown dog.

The-quick red fox jumped over the lazy brown dog.

De quick red fox jumped over the lazy brown dog.

The quick red fox jumped over the lazy brown dogA

T’he quick red fox jumped over the lazy brown dog.

The quick red fox jumped over the lazy brown dog.

The quick red fox jumped over the lazy brown dog.

The quick red fox jumped over the lazy brown dog.

The quick red fox jumped over the lazy brown dog.

The quick red fox jumped over the lazy brown dog.

The quick red fox jumped over the lazy brown dog.

The quick red fox jumped over the lazy brown dog.

The quick red fox jumped over the 1 azy brown dog.

The quick red fox jumped over the lazy brown dog.

The quick red fox jumped over the lazy brown dog.

The quick red fox jumped over the 1 azy brown dog.

aaabbbcccbbbaaa constrain to beginning of line

aaabbbcccbbbaaa constrain to end of line

aaabbbcccbbbaaa one or more b’s: no match

aaabbbcccbbbaaa one or more b’s: no match

aaabbbcccbbbaaa zero or more b’s: match beginning

aaabbbcccbbbaaa tero or more b’s: match end

aaabbbcccbbbaaa rero or more not-a’s: match beginning

aaabbbcccbbbaaa one or more not-a’s: match

aaabbbcccbbbaaa zero or more not-a,b’s: match beginning

aaabbbcccbbbaaa one or more not-a, b’s: match

aaabbbcccbbbaaa

aaabbbcccbbbaaa

aaabbbcccbbbaaa

Figure 9.1. Some Regular Expressions with Matching Strings

9-2 Army Research Laboratory Supercomputer Facility - AF’G, MD

Introductory User Guide - May 1993

Text Editors

ed demo
? demo
cannot open input file

help

(*)a

e [file]
E [file]
f [file]

(1, $) g/W cmds

ww/w
h
H
help

(.)i

I:jk+l)j
(.‘.;I
(.,.)ma

f
demo

.=
0

=

0
a
Now is the time
for all good men

append until .
print next screen
change until .
delete lines
edit new file
force edit new
set file name
global comnand

file

interactive global
help on last error
toggle the help
print conmand help
insert until .
join lines
mark line with x
list nonprintables
move after line a
numbered print
switch p and n
print overview
print lines

to come to the aid of their party.

w demo.more
68

r demo.more
68

2r demo.more
68

.=
5

1, $pn
1 Now is the time
2 for al 1 good men
3 Now is the time
4 for all good men
5 to come to the aid of their party.
6 to come to the aid of their party.
7 Now is the time

invoke ed, copy file “demo” into bufler

ed’s responses are indented

no such file
parentheses indicate default fine addresses

Tl,$)v/RE/cmds

(lY$)WE/
(l,$)w [file]
X

?g

($)=
! c onmand
(.+l)<newline>

i

toggle prompt
quit editor
force quit
read file
substitute m
copy after line a
undo last comnand
inverse global
inverse interactive
write file
enter crypt key
write and quit
search for string
search backward
print line number
shell conmand
print next line
current line
last line in file

1,s
. , $

name of file copied into buffer?
this is also the default file name

line number of current line?

line number of last line?

0 because there is nothing in bufler

append after most recent line

ezit append mode

write bufier to file “demo. more ”
number of bytes
read into bufler after r’s default (last)

read into bufler after line 2

print bufler lines 1 through last, numbered

Army Research Laboratory Supercomputer Facility - APG, MD 9-3

Text Editors Introductory User Guide - May 1993

8 for all good men
9 to come to the aid of their party

3,5d
e demo.more

? warning: expecting ‘w’
e demo.more

68
f

demo .more
W

68
3ml
2,3to

,n
1 to come to the aid of their party.

delete lines 3, 4, 5

overwrite bufler with copy of demo.more

reminder to save buffer

override

e changed the bufler name

to default file, demo.more

move line 3 to line after line 1

copy lines .Z, S to top of file

print buffer with line numbers

2 for all good men
3 Now is the time
4 to come to the aid of their party.
5 for all good men

1,2d delete lines 1, 2
3t. copy line 3 to line after current line

4d delete line 4

1,t duplicate, appending to end

,n
1 Now is the time
2 for all good men
3 to come to the aid of their party.
4 Now is the time
5 for all good men
6 to come to the aid of their party.

3s/the/zzz/n substitute fst occurrence, line 8

3 to come to zzz aid of their party.

l,$s/the/yyy/n substitute fst occurrence, every line

6 to come to yyy aid of their party. onlylastlineprints
3n

to come to zzz aid of yyyir party. note “their”

l,$~/lyzl/x/gn substitute every occurrence, every line
6 to come to xxx aid of their partx. note “party”

,n
1 Now is xxx time
2 for all good men
3 to come to xxx aid of xxxir partx.
4 Now is xxx time
5 for all good men

to come to xxx aid of their partx.

g,x7s/o,z/g on all lines with 2, all ‘lo’) to “z”

,n
1 Nzw is xxx time
2 for all good men
3 tz czme tz xxx aid zf xxxir partx.
4 Nzw is xxx time
5 for all good men
6 tz czme tz xxx aid zf their partx.

g/z/d delete all lines with ‘5”

,n

9-4 Army Research Laboratory Supercomputer Facility - AF’G, MD

Introductory User Guide - May 1993 Text Editors

1 for all good men
2 for all good men

t
l,$jn j0&2 the lines

1 for all good menfor all good menfor all good men
s/men/&\

/g
,n

1 for all good men
2 for all good men
3 for all good men

q
? warning: expecting ‘w’

q

Figure 9.2.

split the lines: i.e., replace each occurrence of
“men” with “men” and a newline

exit

repeat forces ezkt

An ed Demonstration

ed can be used noninteractively by embedding it in a shell script with a “here” file (“here” files are dis-
cussed in the Cray publication, UNICOS User Commands Reference Manual, SR-2011 6.0, under the shell
command, sh; execute man sh for the on-line version). Figure 9.3 shows such a shell script fragment.
The fragment is satisfactory only during J_une. Often, such things are more readily accomplished by other
means, among which are the stream editor, sed, and the programming language, awk. Discussion of awk
is beyond the scope of this document.

ed - <<*****a****
r !date
s/.s/,w
s/^.\W\PJ
s/ //
s/, . *J/J/
s/A .\{T\)/&e/
s/I.. ./&day:/
s/^Tue/&s/

s/^Thu/&rs/
s/Wed/&es/
w mydate

q

Figure 9.3.

Fri Jun 9 12:10:43 EDT 1989
Fri Jun 9 12:10:43 Hyf, 1989
Fri Jun 9, 12:10:43 Q>T, 1989
Fri Jun 9, 12:10:43 H)T, 1989
Fri Jun 9, 1989
Fri June 9, 1989
#Friday: June 9, 1989
#Friday: June 9, 1989
#Friday: June 9, 1989
Friday: June 9, 1989
into file “mydate”
quit

Noninteractive Use of ed

9.3 sed

sed, the stream editor, can be considered the batch counterpart of ed. Unlike ed, it can operate on arbi-
trarily large files because it copies one line into a buffer, executes all the commands which apply thereto
(sometimes reading additional lines in the process), writes the result to standard out, and moves on to the

Army Research Laboratory Supercomputer Facility - APG, MD 9-5

Text Editors Introductory User Guide - May 1993

next input line. Many of the editing commands are the same as in ed, but there are differences both in the
interpretation of the same commands and in the commands available. The editing commands can be
presented to sed as part of the command line, or in a separate file which will be read by sed. Figure 9.4
presents a shell script fragment, using sed, which is equivalent to the fragment of Figure 9.3. For addi-
tional information, execute man sed or see the Cray publication, UNICOS User Commands Reference
Manual, SR-2011 6.0.

date 1 sed -e ‘{s/.I%/.&/

s/^Tue/&s/
s/*Thu/&rs/
s/Wed/&nes/

}’ > mydate

Figure 9.4. Use of sed

9.4 tr

The translate command, tr, is not an editor, but it does perform certain character transformations so
nicely that it is well worth addressing here. tr is more completely documented in the on-line man pages
and in the Cray publication, UNICOS User Commands Rejerence Manual, SR-2011 6.0. Basically, tr
changes all occurrences of specified individual characters in a file to other specified individual characters.
For example:

tr a b <in >out maps every a in file in to a b and writes the result to file out.

tr -s ” ” ” ” copies standard input to standard output and, in the process, replaces each
string of repeated blanks with a single blank. Note that, in consecutive lines,
a trailing string of blanks followed by a leading string of blanks counts as two
separate strings because of the intervening newline character.

tr “[a-z]” “[A-Z]” maps every lower case letter into the corresponding upper case letter.

tr “[O-9]” “##########‘I maps every digit into a #.

tr “[O-9]” “#*lo” as above

tr “[O-g]” ‘I#*” as above

tr “[A-Z] [a-z] [O-9]” “[A*261 [a*261 In*]” maps every upper case letter into an A, every lower
case letter into an a, and every digit into an n.

tr “\012” ,,.-,I maps every newline into a -. This can be particularly useful prior to manipu-
lating newlines in sed. Of course, the inverse tr command is executed after
sed.

tr -cs “[A-Z] [a-z] [O-S]” “[\012*]” maps all characters except letters and digits into newlines
and compresses resulting strings of repeated newlines into single newlines.
The result is a list of “words,” one per line.

9-6 Army Research Laboratory Supercomputer Facility - APG, MD

Introductory User Guide - May 1993 Text Editors

9.5 jove

jove, “Jonathan’s Own Version of EMACS,” is a widely available screen editor which, by virtue of its
capabilities and features, the size of its ARLSCF user community, and the support available at the
ARLSCF, has become the preferred editor at the ARLSCF. jove hews closely to the conventions of
EMACS, although there are some departures. EMACS permits its user to define his own commands in
addition to its native set, and also to bind native or created commands to various keys. New commands
cannot be created in jove, but existing commands can be bound to any key, and commands can be com-
bined into a macro that can be invoked like a standard command.

In common with many other screen editors, jove must be informed of the type of terminal from which it is
being invoked. This is usually effected upon login, but if the screen seems not to respond properly (more
likely when dialing in through a modem), ensure that the following actions have occurred, where name is
the system’s own name for the terminal type:

l in the Bourne shell: TERM=name
export TERM

. in one of the C shells: set term=name

jove is invoked by the command

jove [options] [filenames]

jove provides one or more windows in which different files, or different parts or the same part of one file,
are displayed and manipulated. The position of the cursor on the screen indicates the position within the
file, and changes made are shown more or less immediately on the screen. Modifications are made to buffer
copies of the files of interest rather than to the files themselves. The buffer copies can replace the original
files or be saved as different files in addition to the original files at any time. jove attempts to preserve
buffer contents in the event of a crash or a loss of communication.

jove has rather a large repertoire of commands, but a surprisingly small subset suffices for most editing
tasks. The entire repertoire of commands and their default key equivalents are listed in Figure 9.5.
Several commands accept regular expressions (if enabled), and a few prompt the user for additional input;
such characteristics are not indicated in the figure. The variabfes permit the user modify the manner in
which jove responds to certain commands and CTRL- key combinations. Every printable character is
bound to the self-insert command; thus, merely typing causes text to be entered into the buffer. Except for
self-insert, the more frequently used commands initially are bound to various keys:

l depressed in concert with the CTRL- key

l prefixed with the Escape key

l prefixed with the Escape key and depressed in concert with the CTRL- key

l prefixed with CTRL-X

l prefixed with CTRL-X and depressed in concert with the CTRL- key

Army Research Laboratory Supercomputer Facility - AF’G, MD 9-7

Text Editors Introductory User Guide - May 1993

Buffer Manipulation
buffer-position
list-buffers
make-buffer-unmodified
select-buffer

Deleting
delete-next-char
delete-next-word
delete-previous-char
delete-previous-word
delete-to-killbuffer
delete-white-space
erase-buffer
kill-buffer
kill-to-end-of-line

File Manipulation
find-file
find-file-in-other-window
find-tag
insert-file
read-file
write-current-file
writemodified-files
write-named-file

*X-B
Esc -
-Xb

Movement (Small)

“D
Esc d
Del, ^H
Esc Del; Esc ^H; ‘W
^X*K
Esc \

-Xk
-K

backward-char
backward-paren
backward-word
beginning-of-line
beginning-of-sentence
end-of-line
end-of-sentence
forward-char
forward-paren
forward-word
next-line
previous-line
scroll-down
scroll-up

^X^F
*X4
*X-T
*x*1
*X-R
*x-s; -x-\
*X-M; *X-Return
-x-w

Help and Terminal Commands
apropos Esc h
clear-and-redraw -L
describe-command Esc 1
describe-key ^X?
redraw-display Esc -L
reinitialize-terminal
ring-the-bell *G

Marks
exchange-point-and-mark -x-x
set-mark ^@; -(space)

Miscellaneous JOVE Functions
execute-extended-command Esc x (command)
four-times -U
next-error *X-N
parse-C-errors
parse-LINT-errors
quote-char ^Q; .-
source
string-length -xc

Movement (Large)
beginning-of-file Esc <
beginning-of-window Esc ,
end-of-file Esc >
end-of-window Esc .
goto-line n Esc n Esc g
next-page -V
previous-page Esc v

1

‘

Text Modification
^B c-tab
Esc -B case-character-upper
Esc b case-region-lower
‘A case-region-upper
Esc a case-word-capitalize
^E case-word-lower
Esc e caseword-upper
-F
Esc ‘F
Esc f

:p”

Escz
-z

?rocess Control
exit-jove
make
pause-jove
shell-command
shell-command-to-buffer
spell-buffer
sub-shell

-x-c
-X-E
Esc p
^X!

suspend-jove (= pause-jove)ESC !

*C
*x-L
^X^U
Esc c
Esc I
Esc u

character-to-octal-insert
justify-paragraph
newline-and-indent
newline
newline-and-backup
paren-flash
self-insert
text-insert
transpose-chars

Undeleting
yank
yank-pop

Windows

Esc j
Newline
Return
“0

very bound
very bound
^T

^Y
Esc y

delete-current-window
delete-other-windows

-Xd
-x1

Region Manipulation
append-region
copy-region
filter-region
write-region

Esc w

searching and Replacing
first-nonblank
i-search-forward
i-search-reverse
query-replace-search
replace-search
search-forward
search-reverse

grow-window ^X^
next-window ^Xn
number-lines-in-window
page-next-window Esc -V
previous-window ^XP
shrink-window
split-current-window ‘X2

railoring Jove
bind-macro-to-key
bind-to-key
execute-keyboard-macro
execute-macro
init-bindings
name-keyboard-macro
print (variable)
read-macros-from-file
seequote-chars
set (variable)
start-remembering
stop-remembering
write-macros-tofile

Esc m
-s; -\
-R
Esc q
Esc “E
Esc s
Esc r

3
w

Variables
allow-^S-and--Q
auto-indent
backup-files
c-mode
case-independent-search
fast-prompt
files-should-end-with-newline
internal-tabstop
make-all-at-once
overwrite
physical-tabstop
regular-expressions
right-margin
show-match
scroll-step
text-fill
visible-bell
write-files-on-make

Notes: * alone is the character ‘I”‘; prefixing another character, it means “CTRL-“.
n means an integer.
The space which appears after Esc is for legibility only.
Some commands (e.g., select-buffer) prompt the user for a value.

Figure 9.5. jove Commands and Cray Default Bindings

9-8 Army Research Laboratory Supercomputer Facility - A.PG, MD

Introductory User Guide - May 1993 Text Editors

The following commands are probably the most frequently used ones, and are sufficient to do a consider-
able amount of text editing:

Forward-character and backward-character (*f, ^b; ““’ represents “CTRL-“) move forward
and backward one character position in the buffer. At the end of each line of text is a newline char-
acter; moving forward across it advances the current position to the beginning of the next line.

Forward-word and backward-word (Esc-f, Esc-b) are similar to forward-character and
backward-character, but move by words (continuous strings of alphanumeric characters).

Next-line and previous-line (-n, *p) move by lines.

Delete-next-character and delete-previous-character (*d, *h) delete the character immedi-
ately before and after the current position.

Delete-next-word and delete-previous-word (Esc-d, Esc-h) are similar to delete-next-
character and delete-previous-character, but delete words or partial words to either side of the
current position.

Escape, followed by a number, followed by a command, executes that command that number of
times. For example, Esc-IO^n moves down 10 lines.

Set-mark (*@) marks one end of a region, the other end being the current position. Regions, like
characters, words, and lines, are the operands of various commands.

Delete-to-killbuffer (*x^k) removes all between the mark and the current position, saving it in
the killbuffer.

Yank (^y) inserts a copy of the killbuffer contents at the current position.

Incremental-search-forward and incremental-search-reverse (*\, ^r) search forward and
backward to the next occurrence of the specified string. Accepts regular expressions, if they are
enabled.

Search-forward and search-reverse (Esc-s, Esc-r) prompt for and then search forward and
backward to the next occurrence of the specified string. Accepts regular expressions, if they are
enabled.

Query-replace-search (Esc-q) prompts for a search string and replacement string, and then
searches for the search string, replacing selected occurrences with the replacement string. At each
occurrence, the user is prompted and can respond “yes”, “no”, “all”, “exit”, or “recursive”.
Accepts regular expressions, if they are enabled.

For additional information execute man jove.

Army Research Laboratory Supercomputer Facility - APG, MD 9-9

Text Editors Introductory User Guide - May 1993

9.6 vi

vi is the standard UNIX screen (visual) text editor. ex is an underlying line oriented editor for vi. Its
commands, preceded by a colon and followed by a carriage return, may be used from within vi, and are
often the only way to accomplish certain tasks within vi. Because of jove’s preeminent position at the
ARLSCF, little support is available to the user wishing to use vi, and it is emphasized that jove is the

screen editor of choice at the ARLSCF.

In common with many other screen editors, vi must be informed of the type of terminal from which it is
being invoked. This is usually effected upon login, but if the screen seems not to respond properly (more
likely when dialing in through a modem), ensure that the following actions have occurred, where name is
the system’s own name for the terminal type:

l in the Bourne shell: TERM=name
export TERM

l in one of the C shells: set term=name

vi is invoked by the command

vi [options] [filenames]

or, for a special verbose mode particularly helpful to the beginner,

vedit [options] [filenames]

The position of the cursor on the screen indicates the position within the file, and changes made are shown
more or less immediately on the screen, but are made only to a buffer copy of the file of interest. The
buffer copy is saved upon the user’s command. vi attempts to preserve buffer contents in the event of a
crash or a loss of communication.

vi has rather a large repertoire of commands, many of which are listed in Figure 9.6. That figure is
intended as a quick reference summary; space therein prevents the listing of all the details. For example,
“dw” is described as “delete word.” It is not stated that this means “delete to the right from the current
position through the end of the current word, including trailing white space, not including trailing punc-
tuation, but if the current position is white space, delete from the current position through the end of the
white space.” For additional information execute man vi and man ex, or see the Cray publications,
UNICOS User Commands Reference Manual, SR-2011 6.0, and UNICOS Text Editors Primer, SG-2050.

Initially, and upon return from insert and ex modes, vi is in command mode. Insert mode is selected by
entering one of the characters aiAIoOcCsSR. It permits the entry of arbitrary text and is terminated
normally with Esc or abnormally with ^?. ex mode is entered with Q and permits the use of ex com-
mands as if ex had been invoked, rather than vi; in addition, ex commands may be entered individually
from command mode by pre- and postfixing each one with : and RETURN, respectively. vi supports
string searches and substitutions using regular expressions. vi options permit the user to modify the
manner in which vi responds to certain commands and CTRL- key combinations.

9-10 Army Research Laboratory Supercomputer Facility - APG, MD

Introductory User Guide - May 1993 Text Editors

Adjusting the Screen
^L; -R redraw; eliminating @ lines
2.; z--; 2. redraw, current line at top; bottom; center
zn. use n-line window
-E scroll window down 1 line
^Y scroll window up 1 line

Flle Manlpulation
:e!*; :e /o
:e #*
:q.; :q!*
:w.; :w f*; :w! f*
:x0
:n.
:n (1~28.
zz

start over; edit file f; changes not saved
return to previous file, changes not saved
quit; quit, discard changes
write edit buffer; to file f; overwrite f
write edit buffer then exit VI
edit next file in arglist
specify new arglist
write edit buffer then exit vl

Inserting/ModifiInrz/Deletina Text
a.teztEsc

d-arrow; j

1st nonwhite in next line
1st nonwhite in previous line
next line, same column

AleztEsc
cwlezlEsc
C t eztEsc
:i,jd*
ndd
d’z
dw
D
ilezfEsc
IteztEsc
J
:i,jmk*
oteztEsc
OteztEsc

P; “np; “zp
P; “np; “ZP
rz
RteztEsc
stezfEsc
StezfE.sc

i

;

Y
YW
YYi y
Y’Z
:i,jy-
<<; >>

- -r

append fezf after cursor u-arrow; k previous line, same column

append fezf at end of line nl to column n, default 1
tezf replaces current position to end of word 0 beginning of current line
tezf replaces current position to end of line $ end of current line
delete lines i through j first nonwhite in current line
delete n lines starting with current line r-arrow; I; (space) forward one character
delete current line through line marked z I-arrow; h; ‘H backward one character
delete current character to end of word W next beginning of word or punctuation
delete current character to end of line b preceding beginning of word or punctuation
insert fezf before cursor
insert fezf before first nonwhite ;

next end of word or punctuation
next beginning of word

Movement (Large)
-F
-B
^D
‘U
H
L
M
nG

forward screen
backward screen
scroll down half screen
scroll up half screen
1st nonwhite in top line on screen
1st nonwhite in last line on screen
1st nonwhite in middle line on screen
1st nonwhite in line n (default: last)
preceding beginning of paragraph
next beginning of paragraph
beginning of file
end of file

Movement (Small)

+; l

join line and next line, intervening space B preceding beginning of word
move lines i through j to just after k E next end of word
open new line below, insert fezf (preceding beginning of sentence
open new line above, insert fezf 1 next beginning of sentence
put buffer text after cursor or current line
put buffer text before cursor or current line
z replaces current character Searching and Substituting
fezf replaces characters, one for one ie;;;;;* next occurrence of string
fezf replaces current character

j98tringj+n.
preceding occurrence of sfring

fezf replaces current line nth line after string
undo most recent change to edit buffer ?&ring?--no nth line before string
undo most recent change to current line :i,js/al/s&/g* global substitute s2 for sf in lines i through j
delete current character

;
repeat most recent / or 1

delete preceding character repeat most recent / or 1, reverse direction
yank current character fz cursor to next z in line
yank current word FZ cursor to preceding z in line
yank current line tz cursor before next z in line
yank current line through line marked z TZ cursor after preceding z in line
yank lines i through j repeat last f, F, t, or T
left shift by tabs; right shift by tabs reverse last f, F, t, or T
repeat most recent edit buffer changing cmd i find matching (,), {, or }

While Inserting/Modifying Text
-H erase preceding character
-W erase current word
-U erase to beginning of insert

\ quote -H, ^W, *U
Esc end insertion, back to command mode
-1 interrupt, terminate insert
^D backtab over autoindent
O-D kill autoindent for rest of file
u-arrow-D kill autoindent for current insert
-V quote nonprinting character

Miscellaneous
Esc cancel incomplete command
‘C interrupt command in progress
-1 interrupt
-G show current file and line

\ quotes the special characters

Marking and Returning
m2 mark current position with z
‘2 go to mark z
‘2 go to first nonwhite in z-marked line
.I toggle position between mark and other
I, toggle position between beginning of marked

line and other
Escape to Shell

:sh. open subshell
:! cmd* run cmd, return
:r! cmd- run cmd, insert output, return

Options (set command)
autoindent continue previous indentation (insert mode)
autowrite write before changing files
ignorecase ignore case when searching
lisp 0, {} are s-expressions
list display ^I for tab, $ at end of line

Army Research Laboratory Supercomputer Facility - APG, MD 9-11

Text Editors

set

Q

$
%

modify vi’s behavior
enter ex mode
addresses current line
addresses last line
addresses all lines

magic
noai
noic
nonumber
number
redraw
report
scroll
shiftwidth
showmatch
showmode
slowopen
window
wrapscan
wrapmargin

Introductory User Guide - May 1993

turn on metacharacter meaning of ., [, +
turn off autoindent
turn off ignorecase
turn off line numbering
number lines
redraw screen
threshold for number of lines modified
command mode lines
set reverse tabbing stop
show the match to) and { when typed
show insert mode in vi
stop updates during insert
visual mode lines
regular expression search wraps around file
set margin for text wrap

Notes: ^ alone is the character “*“; with another character, it means “CTRL-“.

n means an integer, 8 a string, 2 a letter.

l represents a carriage return.

Many commands accept numerical prefixes, with the meaning of line number, range of line numbers, column number, number
of lines to scroll, or number of times to repeat the effect of a command.

Line numbers often may be replaced by line numbers relative to the current line (+ or - number), by search strings, or by line
markers prefixed with single apostrophes.

Delete and yank (copy) commands do so into the current buffer, whence the text can be recovered. In addition, vi automati-
cally creates nine more such buffers, named 1 through 9, for the nine most recent deletions, the most recent being in 1. In
addition, the user can create 26 more such buffers named lower case “a” through “z” by prefixing the delete or yank command
with “letter (e.g., “q5dd). Prefixing a “p” or “P” command with “letfer-or-number (e.g., “qP) retrieves the contents to the
edit buffer.

Figure 9.6. vi Commands

9-12 Army Research Laboratory Supercomputer Facility - APG, MD

Introductory User Guide - May 1993 cff 7 Compiling System

10. cf77 Compiling System

The entirety of this chapter applies only to the ARLSCF Cray computers.

cf77 is described as a compiling system because it incorporates processing phases before and after the com-

piler proper (cft77). All the phases except the loader can be said to “compile” Fortran source code, but

only the compiler proper produces binary output, which is then processed by the loader to produce an exe-
cutable program. It is two preliminary phases of the cf77 process that may produce significant improve-

ment in a program’s performance. The first one, fpp, analyzes a program to detect dependencies and adds

directives for use in later phases. The second one, fmp, translates fpp’s output (still essentially Fortran)

to enable multitasking, or parallel processing. This automated multitasking capability is called “autotask-

ing.”

The action of the loader is suppressed by several cf77 options, in which event the relocatable binary out-

put corresponding to each input file (see fifes at the end of the cf77 options list, following) is default
named with the same root name and a .o suffix, or as specified by still another option. When the loader is

not suppressed, the executable binary output is default named a.out, or as specified by a cf77 option or a
segldr option or directive.

The general preprocessor, gpp, is an optional phase of the cf77 system which performs functions formerly
done by the C preprocessor, cpp. These include macro substitution, conditional compilation with direc-

tives #if, #ifdef, and #ifenddef, and use of #include files. gpp is preferable to cpp because its line

numbering scheme is compatible with the other cff 7 processing phases. gpp is invoked automatically for

input files suffixed with .F instead of .f.

Of itself, the compiler proper (cft77) d oes not provide the enhanced optimization capabilities of fpp and
fmp, nor the convenience of gpp and of automatic invocation of segldr.

Throughout this chapter, a number of commands with options, options with arguments, and arguments

are presented. In general, typical UNIX conventions concerning white space, quoting, and metacharacters

apply.

Detailed information may be found in the on-line manual pages and in the Cray publications, CFW Corn-
piling System,

Volume 1: Fortran Reference Manual, SR-3071 5.0

Volume 2: Compiler Message Manual, SR-3072 5.0
Volume 3: Vectorization Guide, SG-3073 5.0

Volume 4: Parallel Processing Guide, SG-3074 5.0

and Segment Loader (SEGLRR) and Id Reference Manual,
ties Reference Manual, SR-2040 6.0.

SR-0066 6.0, and UNICOS Performance Utili-

10.1 cf77: Syntax and Options

cff7 [-Z phase] [-Wd”string”] [-Wu”strdng”] [-Wf”string”] [-W a”string”] [-Wl”string”] [-Wp”string”]

[-cl [--C[v] [,hdu&.] I--F1 [-gl [-cl i-1 incldir] [-J] [-1 lib] [-L dir[,dir]...] [-M] [-N cod

[--0 outfile] I-S] [-T] [-v] [-V] [-II name[=def]] [-PI [-U sym] [--I files

Army Research Laboratory Supercomputer Facility - AF’G, MD 10-l

cff 7 Compiling System Introductory User Guide - May 1993

-Z phase Specifies the phases of the cf77 compiling system to be invoked. phase specifies a code
generation option. The default is c, activating only the compiler and loader. Argu-
ments p, u, and v can be specified as P, U, and V, in order to save intermediate files
from the initial phases of cf7 7.

p Activates the entire compiling system. gpp processing is invoked or not depend-
ing on the input file name suffix, .f (not invoked) or .F (invoked).

V Activates all phases but fmp.
u Activates all phases but fpp.
C Activates the compiler and loader only (default).
m Specifies use of premult (to be removed in cf77 6.0).

-Wkey”string” Passes a quoted string containing options to the compiling system phase selected by
the key letter. Options are expressed in the same format that would be used if that com-
pilation phase were being explicitly invoked by its own command.

key phase command

P generic preprocessor !3PP
d dependence analyzer fPP

;
parallel processing translator fmP
Fortran compiler cft77

f
assembler as
segment loader segldr

-c Disables the load step and saves the binary file with a .o ending. The default is to load

and then delete the binary file.

-C[cpu] [,hdw]... Specifies mainframe and hardware for which the program is to be compiled. Use
of this option is not recommended for alternate cpzl choice. Instead, use the TARGET
environmental variable. See the manuals or execute man target for additional infor-
mation.

-D name[=def] Interpreted only by gpp. Defines name as by a #define directive. If there is no
=def, name is defined as 1. Up to 64 names can be specified, each with its own -D.

-F Activates the flowtrace feature which permits monitoring of the program during execu-
tion. Generates the flow.data file which is read by the flowview utility.

-_g Generates a debug symbol table; equivalent to -Wf”-ee -0 off”; all -Z options are
ignored.

-G Generates a debug symbol table with no effect on optimization; equivalent to
-Wf”-ez”, or when -Zv is used, -Wf”-es” -Wd”-dc -ef”.

-I incldir Names additional directories to be searched in left to right order for files specified by
relative names in INCLUDE lines. The directory containing the input file is searched
first and is the default. Up to 10 directories can be specified, each with its own -1.
When used with gpp, -1 applies to the #include files with relative names. Thus,
#include files whose names are enclosed in “‘I are first searched for in the directory of
the input file, then in directories specified by -1, and finally in the standard directories.
For #include files enclosed in < >, the directory of the input file is not searched.

-J

-1 lib

Processes Fortran programs through fpp and/or fmp without compilation and creates
output files with .j or .m suffix, respectively. -Zp or -Zu, respectively, also must be
specified.

Identifies library files. If the library name begins with . or /, it is used without
modification; else, directories in the directory search list (default: /lib, /usr/lib) are

searched for file 1ibname.a.

10-2 Army Research Laboratory Supercomputer Facility - AF’G, MD

Introductory User Guide - May 1993 cff 7 Compiling System

-L dir[,dir]... Prepends the directory search list with the named directories.

-M

-N 72180

-0 o&file

-P

-s

-T

-U sym

-v

-v

--

files

Processes the Fortran program through fpp and leaves the modified files with a .m
suffix. If -Z is not specified, -Zp is assumed.

Specifies 72- or 80-column wide source code lines. Default: 72.

Overrides default output file name a.out. This option is interpreted by the loader and
does nothing if binary is saved by -c or by -Wf”-b file”.

Only gpp is invoked, and output is placed in fi1e.i (root name from fi1e.F).

Generates Cray Assembly Language (CAL) output in fi1e.s (root name from fi/e.f);
equivalent to -Wf”-es”.

Disables the entire compiling system but displays all options currently in effect for each
system phase. Same as -v option but with no processing.

Interpreted only by gpp. Removes any initial definition of reserved symbol name sym
that is predefined to gpp, as by an #undef directive. Up to 64 symbols can be
specified, each with its own -U.

Indicates each phase of the compilation system as it is encountered and displays its
options and arguments. Output written to stderr (typically the screen), not to stdout or
the listing file.

Activates an option of the same name on each phase of the compiling system. The com-
piler reports compilation time and statistics, and system version. Information is sent to
stderr (typically the screen) and to the listing file.

Signifies the end of the options; input file names follow.

Names of input files containing Cray Fortran source code. Names must be suffixed .f or
.F. The .F suffix indicates that the file is to be preprocessed by gpp (if active).

10.2 cf77: Environmental Variables

The following environmental variables are a part of the execution environment and affect the cf7 7 system:

CAL

CFT77

FMP

FPP

SEGLDR

NCPUS

NPROC

PREMULT

Contains the file name for the CAL assembler; default is /bin/as

Contains the file name for the Fortran 77 compiler; default is /bin/cft77.

Contains the file name for the fmp translator; default is /bin/fmp.

Contains the file name for the fpp dependence analyzer; default is /bin/fpp.

Contains the file name for the segment loader; default is /bin/segldr.

Contains the number of CPUs available to work on a program; default is the number of
physical CPUs on the machine.

Contains the number of processes used for simultaneous compilations; default is 1.

Contains the file name for the microtasking preprocessor (to be removed in cf77 6.0);
default is /bin/premult.

Army Research Laboratory Supercomputer Facility - APG, MD 10-3

cf7 7 Compiling System Introductory User Guide - May 1993

IO.3 cf77: Default Files

The input, output, and intermediate files used by cf77 follow. file is the user-selected root name.

ji1e.a Library file.

file-f Fortran source file.

fi1e.F Fortran source file to be preprocessed by gpp.

fi1e.s Assembly language file.

file.0 Object file.

fi1e.j Output file from fmp.

file.1 Fortran listing file.

fi1e.m Output file from fpp.

a.out Default name of executable output file.

10.4 cft77 Compiler

Correct use of cf77 requires an understanding of cft77, which is the compiler proper invoked by cf77, and
which can be invoked explicitly. Options specified below are presented to cf77 as options within
-Wf”options”, or they may be presented to an explicit invocation of cft77. Use of cf77 is recommended,
rather than explicit invocation of cft77.

10.4.1 cft77: Syntax and Options

cft77 [-a allot] [-A d a rmode] [-b binfile] [-c cifopts] [-C cpu,hdw] [-d oflstring] [-D cdirlist]

[-e onstring [-i i&en] [-I in/name] (-1 fjstfile] [-m msglev] [-M msgfist] [-N col] [-o optim]

[-P incldir] [-R runchk] [-s calfile] [-t trunc] [-VI fi1es.f

Defaulting on all the options is equivalent to:

cft77 -astatic -AfulI -bfifes.o -Ghost-characteristics -dacdfghijmnoPsSuvwxz
-eBpqr -i46 -m3 -N72
-0 noagress,bl,noinline,nokernsched,noloopalign,recurrence,norecursive,scalar,vector,

vsearch,nozeroinc (normal UNIX continuation of preceding line)
-Padditional-INCLUDE-directories fi1es.f

-a allot Selects memory allocation scheme static or stack. static causes all memory to be
statically allocated; that is, any variable allocated to memory occupies the same
address throughout program execution. If stack is selected, read-only constants and
variables in DATA and SAVE statements, and COMMON blocks, are static; all
other variables are stack (their storage location may be used by other entities).
Default: static.

-A adrmode elects addressing mode full or fast on a Cray X-MI’ EA system equipped with
extended memory hardware. Default: full.

-b binfile Creates file binfile for the binary load modules. Disabled by -dB, -eS, and -s.
Default: file.0, root from file.f.

10-4 Army Research Laboratory Supercomputer Facility - APG, MD

Introductory User Guide - May 1993 cf7 7 Compiling System

-c cifopts Creates compiler information file, fi1e.T (root from fife.f), containing information
for use with programming tools which will be available in UNICOS 7.0. See the
Cray publication, Compiler Injormation File (CIF) Reference Man.ual, SM-2401 1.0,
for detailed information. Default: none.

-c [CPU] [,hduJl... Same as the -C option for cf77, but effective only during compilation. See the

-d oflstring

-D c dirlis t

-e onstring

Disables the compiler functions specified in ofstring. These compiler functions are
listed in the following section. Default: -dSacdfghijmnosuvxe; Cray-2 also Pw.

Disables comma-separated compiler directives in cdirlist. Default: all enabled except
INLINE and NOINLINE are disabled unless inlining is activated; see -I and -0,
following.

-i 46164

-I inlname

-1 listfile

-m msgfev

Enables the compiler functions specified in onstring. These compiler functions are
listed in the following section. Default: -eBpqr

Specifies 46 or 64-bit integer arithmetic. Default: 46.

Activates explicit inline code expansion within programs contained in file or direc-
tory inlname. Default: not activated.

Creates file listfife to receive listing output enabled by -e options c, g, m, s, x and
by the LIST and CODE directives. Default: file.], from fife.f.

Specifies the lowest level messages to be issued. Message levels are:

0 Comments
1 Notes
2 Caution messages
3 Warning messages, default
4 Error messages

-M msglist Disables messages by comma-separated message numbers in msglist. Default: none.

-N 72180 Specifies 72- or 80-column wide source code lines. Default: 72.

manuals or execute man target for additional information. Default: host charac-
teristics.

-0 optim [,optim]... Specifies code optimizations to be performed during compilation. Optimiza-

-P incldir

tidn codes are listed in the second following section.

Names additional directories to be searched in left to right order for files specified by
relative names in INCLUDE lines. The directory containing the input file is
searched first and is the default. Up to 20 directories can be specified, each with its
own -P.

-R runchk

-s caljile

-t trunc

-v

Specifies run-time checks. runchk is a concatenation of the desired ones of:

a Compare number and type of arguments passed to procedures with number
and type expected.

b Check subscripts against array bounds.
C Check conformance of arrays in array expressions.

Default: none.

Places CAL output in file calfife. Suppresses loadable binary output. Default: none,
or fife.s with -eS.

Replaces rounding of arithmetic results with truncation of the least significant trunc

bits; trunc < 48. Double-precision variables, function results, and constants are not
affected. Default: rounding.

Provides compilation summary information to file stderr and to listing file if any.
Default: information not provided.

Army Research Laboratory Supercomputer Facility - APG, MD 10-5

cf77 Compiling System Introductory User Guide - May 1993

-- End of options.

ji1es.f Names of the source files. Required.

10.4.1.1 Arguments for -d and -e, Disable and Enable

Option

B
P
S
a

zi
f

:
i

j
m
n
0

P

Q
r

S

U

V

W

X

e

Default

1;
-d
-d
-d
-d
-d
-d
-d
-d

-d
-d
-d
-d

-e

-e
-e

-d
-d
-d

-d
-d
-d

Description

Creates binary object file; no CAL file created.
Cray-2 only; local memory paging.
Generates CAL file to files.
Aborts compilation after first fatal error.
Permits common block cross reference listing.
Generates debug table; -ee preferred.
Generates flowtrace output; cf77 -F preferred.
Generates listing of binary output with CAL equivalent.
Lists only the first statement and the error messages in each program.
Causes a runtime error when an uninitialized local variable is used in a
floating point operation or in array subscripting.
Executes at least one iteration of DO loop if its DO statement is executed.
Enables loopmarked listing of source code to listing file; see -1, preceding.
Generates messages for all nonstandard usages.
Generates code for runtime checks of array conformance and subscripts
versus array bounds; equivalent to -Rbc; to be removed in cft77 6.0.
Allows double precision. -dp causes double precision entities to be com-
piled as single precision, and double complex entities (which otherwise
cause a fatal compilation error) to be compiled as complex.
Aborts compilation when 100 fatal errors are encountered.
Rounds multiplication results, overriding -t. Cannot be disabled on
Cray-2.
Enables listing of source code to listing file; see -1, preceding.
Permits special rounding of real division results.
Causes all variables in all program units to be treated as though they
appeared in a SAVE statement.
Cray-2 only; to be removed in cft77 6.0; same as P argument.
Permits cross reference listing.
Permits use of debugging tools by generating debug table.

10.4.1.2 Arguments for -0, Optimization

The optimization option has form -o&t, where list is a comma-separated list of desired arguments. The
arguments exist as pairs, to enable or disable various features. Each pair except one is of form jeatzlre and
nofeature. The exception is on, off.

aggress

bl

inline[n]

kernsched

loopalign

Causes the compiler to increase certain internal limits, thus allowing some loops to be
vectorized which otherwise would not have been. Default: noaggress.

Permits full bottom loading of scalar operands in loops. Default: bl.

Activates automatic inline code expansion for called subprograms. n
3, indicating the number of levels to be inlined. Default: noinline.

Cray-2 only. Causes compiler to use polycyclic scheduling for small
increase parallelism. Default: nokernsched.

is 1 (default), 2, or

kernel loops to

Causes the compiler to attempt to align DO and DO WHILE (nonstandard) loops on
buffer boundaries to decrease overhead. Default: noloopalign.

10-6 Army Research Laboratory Supercomputer Facility - APG, MD

Introductory User Guide - May 1993 cf77 Compiling System

recurrence Permits the vectorization of reduction loops. Default: recurrence.

recursive Causes the compiler to assume that all subprograms have direct or indirect recursion.
Default: norecursive.

scalar

vector

vsearch

Eeroinc

Permits scalar optimization and associated directives. Default: scalar.

Permits vectorization and associated directives. Default: vector.

Permits vectorization of search loops. Default: vsearch.

Causes the compiler to assume that constant increment variables might be incremented
by 0, requiring generation of conditional vector code. Default: nozeroinc.

Off Turns off all optimization. Default: on.

10.4.2 cft77: Compiler Directives - CDIR$

Compiler directives provide a means to enable and disable particular compilation features from within the
source code; thus, they provide a means for limiting features to portions of subprograms. Compiler direc-
tive lines are identified by CDIR$ in columns 1 through 5 and a blank in column 6; thus, they appear to
other Fortran compilers as comments. The directive itself occupies columns 7 through 72 (or 7 through 80
with -N80). A line may contain multiple directives, except that directives with lists must be on lines by
themselves. With the exceptions of EJECT, LIST, and NOLIST, directives must not appear outside of
a program unit. Unless otherwise stated, the effect of a directive terminates when the end of a program
unit is encountered, or when a directive with the opposite sense is encountered. list indicates a comma-
separated list of the entities of interest.

10.4.2.1 Output Directives

CODE/NOCODE Similar to LIST/NOLIST but pertains to the generated binary object code (not
CAL listing). The last directive encountered controls the entire program unit.

EJECT Inserts a page break at the corresponding point in the otherwise enabled source
listing.

LIST/NOLIST Starts and stops source listing. Overrides command line options.

10.4.2.2 Vectorization Directives

IVDEP[SAFEVL=n] C auses the compiler to ignore vector dependencies when the vector length is at
least 71, default all vector dependencies. Applies to the first DO or DOWHILE
loop, or array syntax assignment, following the directive and in the same program
unit.

NEXTSCALAR Suppresses vectorization of following DO or DO WHILE (nonstandard) loop.

RECURRENCE/NORECURRENCE Toggle on and off otherwise enabled vectorization of reduc-
tion loops; directives override -0 recurrence but not -0 norecurrence. A
reduction loop reduces an array to a scalar value by doing a cumulative operation
on all of the array’s elements; this involves including the result of the previous
iteration in the expression of the current iteration.

SHORTLOOP Declares that a loop has a trip count less than 64, thereby eliminating the need for
code to test for completion of that loop. Applies to the first DO or DOWHILE
(nonstandard) loop following and in the same program unit as the directive.
Effective only in vectorized loops.

Army Research Laboratory Supercomputer Facility - APG, MD 10-i

ci77 Compiling System introductory User Guide - May 1993

VECTOR/NOVECTOR Toggles on and off otherwise enabled vectorization.

VFUNCTION list Indicates that the listed external functions have vector versions.

VSEARCH/NOVSEARCH Toggles on and off otherwise enabled vectorization of search loops. A
search loop is a loop which can be exited by means of an IF statement.

10.4.2.3 Scalar Optimization Directives

ALIGN Aligns a block of code on an instruction buffer boundary. Aligning dominant loops
which can fit within one instruction buffer can decrease overhead.

BL/NOBL Toggles between full and safe bottom loading within loops for which bottom load-
ing is otherwise permitted.

NO SIDE EFFECTS list Declares that listed subprograms do not redefine their arguments, vari-
ables in common blocks, and variables local to their calling program. Permits
register storage across subprogram calls. Not needed for INTRINSICs and
VFUNCTIONs.

SUPPRESS [list] Suppresses scalar optimization at the point where the directive occurs. Variables
in registers are stored to memory, whence they are read at their next reference.
list restricts the effect of the directive to the named arrays.

10.4.2.4 Storage Directives

AUXILIARY fist Allocates listed arrays and common blocks to the solid-state storage device. Not
available at the ARLSCF.

REGFILE [l&j On the Cray-2 only, assigns named common blocks to local memory. The direc-
tive must occur before the first executable statement in the program unit.

STATIC/STACK Select STATIC or STACK allocation for local data. Override -a. The last
occurrence within a program unit is effective for the entire unit.

10.4.2.5 Other Directives

BOUNDS [list]/NOBOUNDS [list] Toggle on and off the checking of subscripts against array
boundaries. Appear after all specification statements. Override -Rb. list res-
tricts the effect of the directive to the named arrays.

FLOW/NOFLOW T urn flowtrace on and off. Override -ef and -df. The last occurrence within a
program unit is effective for the entire unit.

INLINE/NOINLINE Toggle on and off inline code generation when inlining is enabled by -1 or -0
inline.

INTEGER=46 164 Selects 46- or 64-bit integers. Overrides -i. The last occurrence within a pro-

TASKCOMMON

gram unit is effective for the entire unit.

list Declares the listed named common blocks to be local to a single multitasking
task. Makes independent copies of listed blocks used by more than one task. The
directive must occur before the first executable statement in the program unit, and
common blocks so identified in any program unit must be so identified in all pro-
gram units wherein they appear.

10-8 Army Research Laboratory Supercomputer Facility - APG, MD

Introductory User Guide - May 1993 cf7 7 Compiling System

IO.5 segldr Loader

segldr is the loader invoked by cf77. Its options, specified in the following section, are presented to cf77
as options within -Wl”options”, or they may be presented to an explicit invocation of segldr. Use of
cff7 is recommended, rather than explicit invocation of segldr.

Beginning at the main program in the calling tree, segldr links together the needed relocatable binaries to
produce an executable binary. The relocatable binaries are selected first from the object (.o) files named in
objfiles, and then from user-supplied libraries (-1 option), and then from the default libraries. The object
files may have been generated by the compilers (e.g., cft77, cc) or the assembler, or have been extracted
from libraries by bld or ar (bld is recommended). User libraries are searched in the order in which they
are listed. Directories named in the directory search list (-L option; defaults are /lib followed by
/usr/lib) are searched in order for user-specified libraries and directives files whose names have not been
specified with a leading . or /, and for default libraries. In the event of multiple occurrences of needed
entry point names, the first one encountered is accepted, the others being ignored. The default library set
is: libc.a, libf.a, 1ibio.a (Cray X-MI’ only), 1 b i m.a, libp.a, libsci.a, and 1ibu.a.

10.5.1 segldr: Syntax and Options

segldr [-a] [-A file] [-b v&e] [-D dirstring] [- e name] [-E] [-f value] [-F] [-g] [-H hi[+he]]

[-i h-files] [-j names] [-k] [-1 names] [-L Idirs] [-ml [-M arguments] [-n] [-N]

[-0 outfile] [-0 keyword) [-s] [-S s;[+se]] [-t] [-u unames] [-V] [-Z] [-Z] objfifes

-a

-A file

Aligns all code blocks and local data blocks on instruction buffer boundaries.

Identifies file as an existing executable to which relocatables and library extractions
will be linked.

-b n

-D list

Adds n, 1024 word blocks to the BSS space of the loaded program.

Provides a semicolon-separated list of segldr directives. segldr processes these
directives before any directives files.

-e ename Indicates that program execution is to begin at entry ename.

-E Echoes to the load map all directives processed.

-f keyword Sets all uninitialized data to one of the following keyword selected values, or to the
actual value specified.

zeros All bits set to 0 (default).

ones All bits set to 1.

indef 0605054000000000000000 octal, to cause a floating-point error if used
in a floating-point operation.

-indef Same as indef, but with the leading bit on.

indefa Result of a logical OR operation of 0605054000000000000000 octal
and the address of the word being preset.

-indefa Same as indefa, but with the mask’s leading bit on.

value value, where value is a 16-bit octal number between 0 and 177777,
inclusive; value is replicated four times in the 64-bit word.

-F Forces the loading of all modules in the named object files, even if not referenced.

-_g Generates the debug symbol tables and appends them to the executable file.
Enabled by default, disabled by -s.

-H hi[+he] As signs the initial heap size (hi) and the heap expansion increment (he).

Army Research Laboratory Supercomputer Facility - APG, MD 10-9

cf7 7 Compiling System Introductory User Guide - May 1993

-i list Causes the directives in each of the directives files in list to be read. - represents
stdin.

-j list A comma-separated list of directives file names. A name beginning with “.” or “1”
is assumed to be a complete path name; otherwise, segldr looks for file
segdirs/name in the search directories.

-k

-1 list

Redirects all but summary class error messages to the load map file.

A comma-separated list of library file names. A name beginning with “.” or “/” is
assumed to be a complete path name; otherwise, segldr looks for file 1ibname.a in
the search directories.

-L list Adds the listed directories to the beginning of the directory search list. Not for the
faint hearted. Default list is /lib, then /usr/lib.

-m Same as -M,a.

-M [file] [,@sl N ames the load map file for paginated 13%column output (default: stdout, unpa-
ginated, 80 columns) and the type of map to produce. The load map options are:

-n

-N

-0 outfile

Generates a shared text program on the Cray X-MI’.

Inhibits inclusion of the default libraries in the load.

Writes the executable program to outfile. Defaults to the name specified in an ABS
directive, or to a.out.

-0 keyword Selects memory allocation order according to keyword.

cm
mc
tdb
ems

All common blocks first.
All module local blocks first.
All code first, then all initialized data, then all uninitialized data.
Allocates code to maximize usage of extended memory addressing on
the Cray X-MI’.

8

ss.ema
Allocates code to create a shared text program for the Cray X-MI’.
Allocates code to create a split-segment program to maximize use of
EMA on the Cray X-MI’.

ss.tdb Allocates code to create a split-segment program, with code first, then
initialized data, then uninitialized data.

-s

-S si[+se]

-t

-u unames

-v

--e

Inhibits the generation of debug symbol tables.

Assigns the initial stack size (si) and the stack expansion increment (se).

Trial mode. segldr scans all object modules, checks errors, and generates load
maps, but produces no executable program.

Enters unames as undefined entry names. Useful to force loading of desired rou-
tines from a library.

Writes segldr’s version line to stderr.

Specifies an alternate default directives file. The alternate directives must configure
the program correctly for execution under UNICOS.

S Lists only load statistics.
a Sorts block map by address. The default.
al Sorts block map by name.
b Restricts block map to objects from objfiles.

c Lists common block cross-references.
e Lists entry point cross-references.

P a and al.
f All the above.

10-10 Army Research Laboratory Supercomputer Facility - APG, MD

Introductory User Guide - May 1993 cf77 Compiling System

-z Inhibits reading of the default directives file /lib/segdirs/defseg, which is
required for correct loading under UNICOS. Special purpose programs only.

o bjfiles A blank-separated list of file names suffixed with .o to be loaded, file names suffixed
with .a to be processed as libraries, and names of ASCII files containing directives.
-i is recommended for specifying directives files; -I, for libraries.

10.5.2 segldr: Loader Directives

segldr directives provide the ability to restrict the effect of certain segldr options to certain portions of
the files being loaded, and provide certain capabilities (e.g., segmentation) not available through segldr
options. segldr directives may be input on the command line via the -D option, or they may be listed in
a file named on the command line. They are separated by newlines or by semicolons. The form of all
segldr directives is

DIRECTIW[=optionf [,option2[,...]]]

Of the approximately 60 directives, some of the more commonly used ones follow:

ABS

BIN

*

CPUCHECK

DEFDIR

DEFLIB

DUPENTRY

DUPLOAD

ECHO

INCLUDE

LIB

LIBDIR

MAP

MLEVEL

MSGLEVEL

NODEFLIB

NODUPMSG

NOUSXMSG

PRESET

REDEF

SYMBOLS

SYSTEM

TRIAL

Names file to receive the executable program.

Names .o and .a files to be searched for needed elements.

Indicates a comment.

Checking of machine characteristics turned ON (default) or OFF.

Replaces the default directory search list (/lib, then /usr/lib).

Adds libraries to the end of the default list.

Specifies the severity level of messages for duplicated entry point errors,

Specifies the severity level of messages for common block initialization by more than
one module.

Printing of directives turned ON or OFF (default).

The named directives file is processed immediately.

Names additional files to be searched for needed entry points.

Adds names to the beginning of the system’s directory search list for libraries and
directives files.

Specifies which load maps are to be produced.

Specifies the lowest level segldr message to be printed (default: caution).

Specifies severity level for specific messages.

Ignores all default libraries.

Suppresses duplicate entry point messages for specific entry points.

Suppresses unsatisfied external messages for specific externals,

Specifies a value used to preset uninitialized data areas.

Specifies the severity level of messages for redefined common block errors.

Generation of debug symbol table turned ON (default) or OFF.

Selects the target operating system on which the program will execute.

All object modules are scanned, errors checked, and load maps generated, but no exe-
cutable code is produced.

Army Research Laboratory Supercomputer Facility - AF’G, MD 10-11

cf77 Compiling System Introductory User Guide - May 1993

usx Specifies the severity level of messages for unsatisfied external errors.

10.5.3 segldr: Environment Variables

The segldr command processes the following five environment variables:

SEGLDR Contains one or more strings separated by semicolons where each string is a segldr
directive or the name of a file containing segldr directives.

TMPDIR Specifies the directory that the loader uses for its temporary file. The default direc-
tory may be specific to each system.

LPP Specifies the number of lines to print on each page of listing output. Number must be
between 15 and 999, and the default is 57.

MSG-FORMAT Describes a format specification similar to that of the C library routine printf; this
specification can be used to alter segldr error message displays.

NLSPATH Specifies a list of alternate directories that the loader should search for its error mes-
sage catalog. It is used to select alternate catalogs for debugging, or when different
versions of segldr are operating on the same system. NLSPATH is not needed for
normal operations.

10.6 Some Nondefault Libraries

DISSPLA 11.0 libraries (Cray X-MP), in /usr/local/dissplall/lib

1ibdcc.a (Calcomp Interface)
libdis77.a (Utility Routines)
1ibgks.a (GKS)
1ibint.a (Driver Interface)
1ibpvi.a (PVI Interface)

DISSPLA 10.0 libraries (Cray-Z), in /usr/local/lib/disspla.lO

dcc1ib.a
dis1ib.a
gks1ib.a
int1ib.a
pvi1ib.a

(Calcomp Interface)
(Utility Routines)
(GKS)
(Driver Interface)
(PVI Interface)

Math libraries, in /usr/local/lib

1ibimsl.a (IMSL library)
1ibcm.a (NIST Math Library)

BRL-CAD libraries, in /usr/brlcad/lib

1ibcursor.a 1ibnurb.a 1ibrt.a
1ibfb.a 1iborle.a 1ibsysv.a
1ibfFt.a 1ibpkg.a 1ibtermio.a
1ibfont.a libplot3.a 1ibwdb.a
1ibmalloc.a 1ibrle.a

10-12 Army Research Laboratory Supercomputer Facility - APG, MD

Introductory User Guide - May 1993 Fortran I/O

II. Fortran I/O

This chapter presents an overview of certain features of ANSI Standard Fortran 77 I/O operations as
implemented on the ARLSCF Cray computers running under UNICOS release 6.1, and also of certain
Cray extensions (not ANSI standard) to Fortran 77 I/O, some of which correspond to ANSI Standard For-
tran 90 usage. Extensions to or variations from the 77 standard are so indicated. Because the use of non-
standard features diminishes the portability of Fortran code, it is recommended most strongly that non-
standard features not be used, unless significant benefits accrue through their use. A more complete dis-
cussion, and additional features, can be found in chapters 7, 8, and 9 of the Cray publication, CF77 Com-
piling System, Volume 1: Fortran Reference Manual, SR-3071 5.0, and in the Cray publications, Segment
Loader (SEGLDR) and Id Reference Manual, SR-0066 6.0, UNICOS File Formats and Special Files Refer-

ence Manual, SR-2014 6.0, Volume 1: UNICOS Fortran Library Reference Manual, SR-2079 6.0, and
UNICOS I/O Technical Note, SN-3075 6.0.

Throughout this chapter, except at the end, where they are discussed, those entities called internal files are

entirely ignored. Accordingly, file always means external file, except at the end of this chapter.

A remark must be made concerning the major software systems pertinent to this chapter. The ARLSCF
Cray computers run UNICOS, release 6.1. The Fortran dialect is Cray Fortran release 5.0. At the writing
of this chapter, the file system in use is release 5, with installation of the release 6 file system pending. The
choice of file system is almost, but not quite, transparent to the Fortran programmer. Such differences are
identified as they are encountered in this chapter.

11.1 Files

A file is a structured collection of information, created in, maintained in, and removed from external (typi-
cally disk) storage by the operating system. UNICOS files are created as permanent files; unlike some
other operating systems, UNICOS creates no temporary files which must explicitly be made permanent lest
they disappear.

11.1.1 Formatted/Unformatted

A formatted file consists of ASCII characters and can be viewed more or less directly, as on a terminal
screen or line printer. It can be manipulated by any of a multitude of UNICOS utilities to accomplish
tasks such as horizontal or vertical cut and paste, searching, sorting, counting, and editing. An unformat-

ted file consists of binary data and cannot be viewed directly, nor can intuitive tasks like those just men-
tioned be performed directly thereon.

11.1.2 Sequential/Direct

A sequential file can be thought of as information stored on magnetic tape. When the file is positioned at
some datum, some other datum can be accessed only by traversing all the intervening data. Data in a
direct file can be accessed in any order, without traversing intervening data.

Army Research Laboratory Supercomputer Facility - APG, MD 11-l

Fortran I/O Introductory User Guide - May 1993

11.1.3 Records

Files consist of records. A record is the smallest entity which can be manipulated by a Fortran I/O state-
ment. A formatted record is a series of characters, typically a line, with length equal to the number of
characters therein. Fortran formatted record maximum lengths are restricted’ to a default maximum
length of 267 characters on the Cray X-MB and to 1024 characters on the Cray-2. These maximum
lengths can be further restricted by the physical characteristics of the specific hardware devices which serve
as source or destination of the record. Except for restrictions imposed by hardware devices, the default
maximum record lengths may be increased on the Cray-2 by invoking the WNLLONG subroutine (see
the Cray publication, Volume 1: UNICOS Fortran Library Reference Manual, SR-2079 6.0), and on the
X-MI’ by using segldr directives. For example, to increase the maximum length of a formatted input
record to 384 characters, and of a formatted output record to 522 characters, on the X-MI’, use the fol-
lowing directives. Note that the COMMONS directives specify values greater by exactly 9 than the
desired maximum lengths.

SET=$WBUFLN:522
COMMONS=$WFDCOM:531
SET=$RBUFLN:384
COMMONS=$RFDCOM:393

Each formatted record ends with a newline character’ (octal 012), which is not included in the record’s
character count.

Unformatted records are not constrained to a maximum length, except by hardware.’ Their lengths are
measured in words for noncharacter data or bytes for character data. Complex and double precision data
require two words per datum. A character datum of length len requires ({/en--1)/8)+1 words. Other data
types require one word per datum.

11.1.4 Multifile Files

UNICOS supports multifile files on the Cray X-MI’ but not on the Cray-2. A multifile file is referred to
by name as a single file, but it contains embedded end-of-file (EOF) records. Such records can be written
by the Fortran ENDFILE statement and detected by the READ statement. Only unformatted files can

be multifile files.

11.2 Files and Unit Identifiers

A Fortran program obtains information from, or sends information to, a file by executing one of several
data transfer statements (members of the set of I/O statements), the more commonly used ones being:

READ

WRITE

PRINT

BUFFER IN+

BUFFER OUT’

READMS’

WRITEMS’

t Not ANSI standard.

11-2 Army Research Laboratory Supercomputer Facility - AF’G, MD

Introductory User Guide - May 1993 Fortran I/O

An I/O statement references a file by a unit identifier, and the operating system, by a filename or some
other method. A unit identifier is a nonnegative integer expression, or an “*“. The filename follows nor-

mal UNIX syntax and can be the file’s name, the file’s relative path name, or the file’s full path name, as
appropriate. UNICOS file system release 5 permits filenames up to 14 characters long and path names up
to 128 characters long. UNICOS file system release 6 permits filenames up to 256 characters long and full
path names up to 1023 characters long. As an example of “some other method,” UNICOS can reference
its system input, system error, and system output files (commonly known as stdin [standard in], stderr,
and stdout) even though these files are unnamed.

For an I/O statement to be able to reference a file, the unit identifier and the filename must somehow be
associated with each other, connected to each other, or OPENed. All of these terms, at least in practice
on the ARLSCF Crays, are equivalent. Certain portions of the following discussion concerning file open-
ing, connection, and existence may differ somewhat from the ANSI standard, but the discussion is in
accord with the realities of Fortran computing on the Cray computers at the ARLSCF.

The most direct method for a Fortran program to open a file is by use of the OPEN statement, a simple
form of which is, for example

OPEN (S,FILE= ‘myfile ‘)

This particular statement associates unit 8 with file “myfile” in the directory from which the Fortran pro-
gram is executed. Because all other values which might have been specified within the parentheses have
been defaulted, the unit and file are OPENed for sequential, formatted output, and the file is positioned
in such a way that its first+ record is ready for access.

Note that nothing has been said about the various UNICOS permissions which obtain for the file directly
(owner, group, other) and by virtue of its location in a hierarchy of UNICOS directories. It is the responsi-
bility of the person executing the program to ensure that these permissions are appropriate to the intended
use of the file.

11.3 The OPEN Statement

The OPEN statement is used to establish or alter a connection between a unit and a file, creating the file
if necessary. Its effect is global. Its syntax is as follows. “[I” indicate optional items. Order of the vari-
ous items is immaterial, except that u must be first if UNIT= is not present. Values are provided as
expressions (constants, symbolic constants, variables, array elements, function references, and combina-
tions thereof) of the appropriate type. If the file already exists, the characteristics specified, explicitly or
by default, must be appropriate to the file.

OPEN ([UNIT=]u u is the desired unit designator; O-99.’

[,FILE=fn] fn is the desired filename; defaults to fort.u;f of type character.

[,STATUS=sta] sta is ‘OLD ’ to specify an existing file; requires FILE=fn.
‘NEW’ to specify a nonexisting file, which will be created;

requires FILE=fn.
‘UNKNOWN’ to specify either an existing or a nonexisting

file; the default.
‘SCRATCH ’ to specify an unnamed, previously nonexisting,

file which will exist no longer than until program
termination; FILE=fn not permitted.

+ Not ANSI standard.

Army Research Laboratory Supercomputer Facility - AF’G, MD 11-3

Fortran I/O Introductory User Guide - May 1993

[,IOSTAT=ios]

[,ERR=sl]

[,FORM=jm]

[,ACCESS=acs]

[,REcL=~~]

[,BLANK=bfnlc]

[,POSITION=p]+

[,DELIM=dlm]+

[,PAD=pad]+

ios is the name of a type integer storage location into which will be
placed the error status of the OPEN upon its termination.

sl is a statement label to which control will be transferred if an error
occurs during the OPEN; default is the system’s own error handling.

j?n is ‘FORMATTED’ or ‘UNFORMATTED’ to specify the type
of data transfer for which the connection is made; default is ‘FOR-
MATTED ‘ for ‘SEQUENTIAL’ access or ‘UNFORMATTED’
for ‘DIRECT ’ access.

acs is ‘SEQUENTIAL’ for sequential access or ‘DIRECT’ for
direct access; default is ‘SEQUENTIAL ’

rl is the record length in bytes of the records in a ‘FORMATTED’
or ‘UNFORMATTED’ ’ DIRECT’ access file; of type integer.

blnk is ‘NULL’ to ignore blanks in numeric input fields (except that
an entirely blank field is interpreted as zero) or ‘ZERO ’ to treat non-
leading blanks in numeric input fields as zeroes; default is ‘NULL ‘.

applies only to ‘SEQUENTIAL’ files.
p is ‘REWIND’ to initially position the file at its beginning.

‘APPEND’ to initially position the file at its end, just before the
EOF record.

‘ASIS ’ to leave an existing file at its most recent position;
equivalent to ‘REWIND’ if the hardware device does
not retain the current position across I/O statements, or
if the current position is undefined, which is the case after
a CLOSE; the default.

acn is ‘READ’ to prevent writing to the file or ‘WRITE’ to
prevent reading from the file or ‘READWRITE ’ to prevent neither;
defaults to the file permissions.

dim is ‘APOSTROPHE’, ‘QUOTE’, or ‘NONE’ to specify the
character to be used as a delimiter for type character constants in
namelist+ or list-directed I/O; default is ‘NONE’.

pad is ‘YES ’ or ‘NO ’ to specify whether formatted input is padded
on the right with blanks when it is shorter than the format
specification.

11.4 The CLOSE Statement

The CLOSE statement is used to break a connection between a unit and a file, allowing a formerly con-
nected file to be connected to some other unit, a formerly connected unit to be connected to some other
file, or the unit and file to be reconnected to each other with the same or different connection characteris-
tics. Its effect is global. Its syntax is as follows. “[1” indicate optional items. Order of the various items
is immaterial, except that 21 must be first if UNIT= is not present. Values are provided as expressions
(constants, symbolic constants, variables, array elements, function references, and combinations thereof) of
the appropriate type.

+ Not ANSI standard

11-4 Army Research Laboratory Supercomputer Facility - APG, MD

Introductory User Guide - May 1993 Fortran I/O

CLOSE ([UNIT=]u u is the desired unit designator; O-102+; loo-102 have no effect.+

[,STATUS=&] sta is ‘KEEP’ to specify that the file associated with unit u continues
in existence after being CLOSEd; the default for non-
‘SCRATCH’ files; must not be used with
‘SCRATCH’ files.

‘DELETE’ to specify that the file associated with unit u ceases
to exist after being CLOSEd; the default for
‘SCRATCH’ files.

[,IOSTAT=ios] ios is the name of a type integer storage location into which will be
placed the error status of the CLOSE upon its termination.

[,ERR=sl) si is a statement label to which control will be transferred if an error
occurs during the CLOSE; default is the system’s own error handling.

11.5 Connections

The maximum number of files which can be open simultaneously per process is 60 on the Cray X-MI’ and
100 on the Cray--2.t Standard input, standard output, and standard error are always open and do not
contribute to the count of open files. cft77 supports units O-102+ and *.

Units O-192+ and * are preopened for formatted sequential I/O as follows, the * connection depending
upon whether the * appears in an input or an output statement.

unit file

*, 5, 100 standard input
*, 6, 101 standard output
0, 102 standard error
other u fort.u

A “preopened” file is one which, without the OPEN having been executed, is nevertheless connected to a
particular unit. The connection has certain characteristics, just as if the program had executed an
appropriate OPEN statement. Standard input, standard output, and standard error cannot be connected
to units other than those specified because they are unnamed files, and so there is no way for a Fortran
program to associate them with other units. Unit * is the preferred unit for referencing standard input
and standard output because the association is defined within the ANSI standard. Units *, 100, 101, and
102 cannot appear in OPEN statements, nor can their connections be altered in any way. The connec-
tions for units 0, 5, and 6 can be altered, broken, and reestablished, or even broken and the units then con-
nected to some other file.

An OPEN statement whose unit is not currently connected to some user-specified file (by virtue of an ear-
lier OPEN statement) and which does not include the FILE= specifier, automatically refers to file fort.u,
where u is the unit number, except that if the unit number is 5, 6, or 0, then the file referred to is standard
input, standard output, or standard error, respectively. If necessary, file fort.u is created with size 0 upon
execution of the OPEN.

An OPEN statement whose unit is currently open and which references the file connected to that unit (by
default or explicitly with a FILE= specifier) can change only the value of the BLANK= specifier.

t Not ANSI standard.

Army Research Laboratory Supercomputer Facility - APG, MD 11-5

Fortran I/O Introductory User Guide - May 1993

An OPEN statement whose unit, u, is currently open and which references some file other than the one
connected to u has effects exactly as if it were immediately preceded by the statement

CLOSE (u)

A connected file cannot be connected to some other unit without first closing the existing connection.

11.6 Alternatives to OPEN and CLOSE State-
ments

At program termination, all files still open within that program are CLOSEd with default specifier
values.

If a unit number u other than *, 100, 101, 102 appears in a READ or a WRITE statement which executes
while that unit is not open, then the effect is exactly as if the statement

OPEN (u),

were executed immediately before the READ or WRITE statement.

The UNIX concepts of piping and redirection can be used to permit Fortran programs to access files of
various names, of which files the programs have no knowledge at all. For example, if pgml, pgm2, pgm3,
and pgm4 are names of executable files, each of which contains the executable code for a (different) Fortran
program which reads from standard input and writes to standard output, then

pgml < inputfife > outputfife

or

cat inputfile 1 pgml > outputfile

has the effect that pgml reads from file inputfile and writes to file outputfiie, while

(pgm2 < inputfile) 1 pgm3 1 pgm4 > outputfile

has the effect that pgm2 reads from file inputfile and sends its output to pgm3, which reads it and sends its
own output to pgm4, which reads it and writes its own output to file outputfile. As convenient as this sort
of thing may be, it does restrict the number of accessible files to two (or three, if standard error is con-
sidered).

The UNIX In (link) command permits any number (up to the maximum; see the preceding section, “Con-
nections”) of files to be accessed by a Fortran program, of which files’ names the program has no
knowledge at all. For example,

In myjile f0rt.u

permits a Fortran program to access the file myfile while opening only the file fort.u, with or without, an
OPEN statement.

We recommend strongly that, with the exception of referring to standard input and standard output as
unit * and using the techniques of piping and redirection, none of these techniques be used. Units ought to
be explicitly OPENed and CLOSEd with appropriate specifiers and meaningful filenames, such filenames
being read as character data by the program, interactively or from a file.

11-6 Army Research Laboratory Supercomputer Facility - APG, MD

Introductory User Guide - May 1993 Fortran I/O

11.7 Data Transfer

11.7.1 READ, WRITE, and PRINT Statements

The ARLSCF Crays provide the ANSI standard data transfer statements READ, WRITE, and PRINT,
which can communicate with sequential and direct access, formatted and unformatted files. Their syntax
is

READ (clist) iolist
WRITE (clist) iolist
PRINT f, iolist

where iolist is the list of entities whose values are to be transferred, clist is a list of control specifiers, and j
is as described under the FMT specifier, following.

In READ statements, the entities in the I/O list must be names of storage locations which are to receive
data, and implied DO loops specifying such locations. In WRITE and PRINT statements, the entities in
the I/O list are expressions and implied DO loops specifying such expressions, except that any functions
specified therein must not themselves invoke data transfer statements, not even to transmit error messages.

Description of clist follows. “[1” indicate optional items. Order of the various items is immaterial, except
as indicated. Values are provided as expressions (constants, symbolic constants, variables, array elements,
function references, and combinations thereof) of the appropriate type.

[UNIT=] u

[,[FMT=lfl

[,END=sn]

[,REC=m]

[,ERR=s]

u is the desired unit designator; O-102+, *; if UNIT= is omitted, u must be the first
item in the list.

j is a statement label referencing a FORMAT statement, a character expression
whose value is a format specification, or an * denoting list-directed I/O; if UNIT=
appears, then jcannot be specified without FMT=; if neither UNIT= nor FMT=
appear, then j, if it appears, must be the second item in the list; the format must not
specify record lengths greater than the current maximum; presence of jidentifies the
statement as one performing formatted I/O; absence identifies the statement as one
performing unformatted I/O.

sn is a statement label to which control is transferred if an EOF is detected during a
READ; if not used, a fatal error occurs at EOF; used only with sequential READS.

m is an integer > 0 indicating the record where a direct access I/O operation is to
begin; prohibited with sequential I/O.

s is a statement label to which control is transferred if a recoverable error occurs dur-
ing the I/O operation; default is the system’s own error handling.

[,IOSTAT=ios] ios is the name of a type integer storage location into which will be placed the error
status of the I/O operation upon its termination.

11.7.2 ‘FORMATTED’ and ‘UNFORMATTED’ I/O

Formatted I/O reads and writes data in the form of ASCII+ characters. The data files are suitable for
printing and viewing on terminals with a minimum of processing, and, generally speaking, are portable
across computing systems. The format provides the rules according to which the values of the entities in

7 Not ANSI standard.

Army Research Laboratory Supercomputer Facility - AF’G, MD 11-7

Fortran I/O Introductory User Guide - May 1993

the iolist are converted between the ASCIIt external representation and the binary internal representation.
The types of those entities must agree with the types implicit in the various format edit descriptors. Typi-
cally, a formatted record may be read correctly using several different formats.

Unformatted I/O reads and writes data in its internal binary representation, without conversion. Typi-
cally, the data files are unsuitable for any purpose other than being read on a computing system more or
less similar to the one on which they were produced, by a READ statement similar to the WRITE state-
ment which produced them. In particular,

l The iolist of the READ statement must not attempt to read more items than were in the iolist of
the WRITE statement which wrote to the file.

l The types of the items in the iolist of the READ statement must match, item by item, those of the
items in the iolist of the WRITE statement which wrote to the file.

Because there is no conversion of data, unformatted READS and WRITES are considerably faster than
formatted READS and WRITES.

11.7.3 List-Directed I/O

Lisedirected I/O, denoted by an * in the format position of the control list, is a special case of sequential,
formatted I/O.

The effect of listrdirected input is as if the Fortran program scanned the input record and combined the
manner in which the record is laid out with the program’s own knowledge of the type of each entity in the
ioliat to create a format specification, that specification then being used to READ the record. .Blank,
comma, slash, asterisk, and end-of-record serve as data item separators and convey certain additional
information to the READ statement.

A list-directed output statement simply outputs the values of the entities in the iolist according to their
type, separating them with blanks and commas in a system-dependent manner.

11.7.4 ‘SEQUENTIAL’ and ‘DIRECT’ I/O

A good conceptual model for ‘SEQUENTm’ files is a file stored on magnetic tape. On such a file, the
various records are written in sequence and can be accessed only in that sequence; to access the nc record,
the (n-l)& record must first be accommodated.

The characteristic of a ‘SEQUENTIAL’ file, that intervening records must be traversed, can result in
significant inefficiencies when only certain noncontiguous records are to be read, or when records are to be
read out of the sequence in which they were written. Another characteristic of Fortran ‘SEQUEN-
TIAL’ files, which gives evidence of their tape ancestry, is that, once any embedded record is modified
(i.e., rewritten), the portion of the file beyond that record is unusable. Therefore, to modify a certain
embedded record, that record and the portion of the file from that record to the end of the file must be
rewritten. (Appending records presents no such inconvenience.)

‘DIRECT’ files eliminate the cited problems by permitting records to be accessed in any sequence. Each
record is assigned an ordinal, which serves as an index permitting such access. The penalty for such con-
venience is that all records in such a file must be of the same length. (There are nonstandard techniques
for writing variable length record files with nonsequential characteristics.)

More correctly stated, it is not the file itself which is ‘SEQUENTIAL’ or ‘DIRECT’, but rather, the
technique used to access it. Any file whose records are all of the same length (and which resides on a dev-
ice compatible with nonsequential access) may be opened for either ‘SEQUENTIAL’ or ‘DIRECT’
access. When OPENed for ‘SEQUENTIAL’ access, such a file’s records are accessed in their positional
sequence: the first, then the second, _... When OPENed for ‘DIRECT’ access, such a file’s record
numbers are the records’ ordinals.

11-8 Army Research Laboratory Supercomputer Facility - APG, MD

Introductory User Guide - May 1993 Fortran I/O

Figure 11.1 presents a code fragment which displays the OPENing of four files, one corresponding to each
of the four combinations of ‘FORMATTED ‘, ‘UNFORMATTED’, ‘SEQUENTZAL’, and
‘DIRECT ‘; the WRITEing of computational results thereon for 1000 cases; the READing of selected
cases therefrom; and, finally, their CLOSEing.

INTEGER. &;ECT (3)
DIMENSION ARRAY(5)
CHARACTER STRING*16

DATA N,‘S’EL’ECT /3,1,537,1000/
OPEN (l,FILE=‘sequ’,ACCESS=‘SEQUENTIAL’,

+ FORM& ‘UNFORMATTED ’)
OPEN (Z,FILE=‘diru’,ACCESS=‘DIRECT’,RECL=64,

+ FORM= ‘UNFORMATTED ’)
OPEN (3,FILE=‘seqf’,ACCESS=‘SEQUENTIAL’,

+ FO- ‘FORMATTED ’)
OPEN (4,FILE=‘dirf’, ACCESS=‘DIRECT’ ,RECL=118,

+ FOI?hk ‘FORMATTED ’)
DO 100 I=l,lOOO

WRIT; l (;) VAR,STRING,ARRAY
WRITE (2, REC=I) VAR,STRING,ARRAY
WRITE (3,lOOO) VAR,STRING,ARRAY
WRITE (4,1OOO,REC=I) VAR,STRING,ARRAY

100 CONTINUE
DO 200 I=l,N

REWIND 1
REWIND 3

C NOTE THAT AN IMPLIED DO ON UNIT 1 WOULD
C MAKE THE INPUT RECORD TOO LONG

DO 150 J=l,SELECT(I)
READ (1) VAR,STRING,ARRAY

150 CONTINUE

READ (2, REC=SELECT(I)) VAR,STRING,ARRAY
READ (3,100o) (VAR,STRING,ARRAY,J=~,SELECT(I))
READ (4,1000,REC=SELECT(I)) VAR,STRING,ARRAY

200 CONTIN&
. .

CLOSE (1)
CLOSE (2)
CLOSE (3)
CLOSE (4)

1000 FORMAT ;E*l7-.6,A,5El7.6)
END

Figure 11.1. I/O with the Four Combinations of FORM and ACCESS Values

Army Research Laboratory Supercomputer Facility - APG, MD 11-9

Fortran I/O

11.7.5 Carriage Control

Introductory User Guide - hlay 1993

Oftentimes, Fortran programs output certain printable characters in column 1 to effect carriage control on
line printers configured specifically to process Fortran output. On such printers, column 1 is interpreted as
containing a carriage control character and its printing is suppressed. The printers available at the
ARLSCF do not support this feature; rather, they follow UNIX conventions to achieve carriage control.
The UNICOS utility, asa, is available to convert Fortran printable files with column 1 carriage control
characters into UNICOS printable files. Bsa’s output is to stdout, with error messages to stderr. Its input
is from stdin (thus allowing its use in a pipe) or from files named as arguments. For additional informa-
tion, see the asa manual page (i.e., execute man asa).

11.7.6 Newline Suppression

ANSI Standard Fortran 77 causes every sequential, formatted WRITE statement to go to the next line as
its last act, and provides no means by which this may be suppressed, even though such suppression might
be useful, e.g., in the output of prompts during interactive input. As an extension to the standard, Gray
Fortran provides the edit descriptor, $, which, if in the logically last position of the output format,
suppresses movement to a new line upon completion of the WRITE.

11.7.7 NAMELIST I/Ot

A Cray extension to the ANSI standard provides for NAMELIST input and output, which are docu-
mented in the CF77 Reference Manual. It is denoted by the NAMELIST group nume in the format
specifier position in the control list. This technique permits data to be input in any sequence and accord-
ing to any format which are desired at the time of input. It is, however, tedious because it can require
about twice as much data entry effort as the other formatted input techniques. More importantly, its use
is likely to render a program nonportable. Figure 11.2 presents an example of the use of NAMELIST.

11.7.8 BUFFER IN and BUFFER OUT Statements?

A Cray extension to the ANSI standard provides for BUFFER IN and BUFFER OUT input and out-
put, which are documented in the CF77 Reference Manual. This technique provides for asynchronous
unformatted I/O; that is, once the I/O operation has been initiated, the program does not wait for its
completion, but immediately continues on. Considerable performance improvement may be achieved when
I/O operations constitute a significant portion of a program’s activity and there is sufficient other work to
be accomplished while I/O continues, more or less independently of program execution. Use of BUFFER
IN and BUFFER OUT is likely to render a program nonportable.

One BUFFER IN/BUFFER OUT operation transfers data to/from a single array or a single common
block, in multiples of 512 words. On the Cray-2, the files being accessed must be of the pvre data struc-
ture (see the following section, “File Structures”). The UNIT and LENGTH functions are available to
delay the execution sequence as desired until specific BUFFER IN and BUFFER OUT operations are
completed, and to return status and number of words transferred information. Subsequent BUFFER IN
and BUFFER OUT operations on a given file or unit are not initiated until preceding operations on
those units are completed.

1 Not ANSI standard

11-10 Army Research Laboratory Supercomputer Facility - APG, MD

Introductory User Guide - May 1993 Fortran I/O

+**+*

program:

PROGRAM DEMO
NAMELIST /IN/ FL,W,H,DEN
NAMELIST /OUT/ WGT,FL,W,H
DATA FL,W,H,DEN /4*1./

10 READ (*,IN,END=20)
WGT=DEN*FL*W*H
WRITE (* ,OUT)
GOT0 10

20 STOP
END

input:

columns 1,2

11
$IN $ use program internal values
$IN FL = 3., W= 3. $
$INDEN= .5 $

output:

columns 1,2

11
&OUTPUTWGT=l., FL=l., W=l., H=l., DEN=l., &END
&OUTPUT WGT=9., FL=3., W=3., H=l., DEN=l., &END
&OUTPUTWGT=4.5, FL=3., W=3., H=l., DEN=0.5, &END

Figure 11.2. NAMELIST I/O

Figure 11.3 presents an example of the use of BUFFER IN and BUFFER OUT. The first BUFFER
IN initiates a transfer of 1024 words from file in to array A. Execution continues without waiting for
completion until the second BUFFER IN is reached, at which time there is a delay until the first one
completes (because both reference the same unit). This BUFFER IN transfers 512 words from file in to
the specified portion of array C. Immediately upon initiation of the second BUFFER IN, the BUFFER
OUT is initiated, and execution continues past the BUFFER OUT while input and output are effected.

Army Research Laboratory Supercomputer Facility - APG, MD 11-11

Fortran I/O Introductory User Guide - May 1993

DIMENSI;IN’ A(1024), C(10000)

OPEN (Si,‘F;LE=‘in’ , FORM= ‘UNFORMATTED ’)
OPEN (22 ,FILE=‘out ‘,FORM=‘UNFORhJATTED’)

BUFFER ;< ;32,0) (A(l),A(1024))

BUFFER ;N’;32,0) (C(319)$(830))
BUFFER OUT (22,0) (A(l),A(1024))

. . .

Figure 11.3. BUFFER IN and BUFFER OUT I/O

11.7.9 READMS and WRITEMS Statementst

READMS and WRITEMS perform I/O similarly to READ and WRITE with the ‘DIRECT’
specifier, except that records no longer need be all of the same length. To use these and other MS subrou-
tines, a program defines an array in storage in which is maintained an index of file positions versus record
indices. Actual maintenance of the array is performed by the MS software package. The record keys can
be numeric or alphanumeric, and data transfer can be synchronous or asynchronous. Detailed information
is available in the Cray publication, UNICOS I/O Technical Note, SN-3075 6.0.

11.8 Improving I/O Performance

The following techniques can be used to achieve greater I/O efficiency:

Using an implied DO within an I/O statement is faster than placing the I/O statement within a
DO loop.

Specifying an entire array by name is faster than specifying it element by element using an implied
DO (by a factor of about 4 when transferring a 1000 element array).

Unformatted I/O is considerably faster than formatted I/O (by a factor of about 250 on the Cray
X-MP). The cost is that the output file is almost certain to be unusable on a dissimilar computing
system.

BUFFER IN+ and BUFFER OUT+ increase performance (at the cost of rendering a program
nonstandard) by allowing other processing to occur during transfers. Even greater transfer rates
can be obtained by using pure data files (see “File Structures,” following) with these statements.

1 Not ANSI standard.

11-12 Army Research Laboratory Supercomputer Facility - APG, MD

Introductory User Guide - May 1993 Fortran I/O

11.9 Positioning the File

The ANSI standard leaves undefined the position of a sequential file in many situations. The following
describes the situation for sequential files on the ARLSCF Crays when the POSITION=+ specifier is not
used in the OPEN statement. The OPENing of the file may have been accomplished by any means.

l When a sequential file is first opened or created, it is positioned at its beginning.1

a A REWIND positions a sequential file at its beginning.

l A READ, WRITE, or PRINT statement positions a sequential file just after the record just
transmitted, ready to access the next record.

. A READ statement which detects an EOF condition does one of two things:

. If the END= specifier was used, control is transferred to the statement indicated, and the file
positioned after the last data record, that is, correctly positioned to append additional data.

l If the END= specifier was not used, a fatal error occurs and the program terminates.

is

11.10 File Structured

Apart from the characteristics ‘SEQUENTIAL’, ‘DIRECT’, ‘FORMATTED’, and ‘UNFOR-
MATTED ‘, ANSI Standard Fortran leaves undefined the scheme according to which data are stored in
files. CF77 as implemented on the ARLSCF Crays uses the following I-JNICOS file structures:

text

blocked

pure data

This file structure is used for all formatted I/O, both sequential and direct. It consists of a
sequence of 8-bit ASCII characters. Each record is terminated with the ASCII newline
character (octal 012), which is not included in the record’s character count. No record can
be longer than the current maximum record length (see the preceding section, “Records”).
A UNICOS sequential text file corresponds to the normal UNIX ASCII file.

This file structure is used by default for sequential, unformatted I/O. Each block contains
512 words, and each record begins on a word boundary. Blocks and records are delimited
by control words. When such a file is created by a Fortran program, it is not easily read-
able except by a Fortran program using a READ statement similar to the WRITE state-
ment which wrote to the file, and executing on a system similar to the one on which the file
was created.

This file structure is used by default for direct, unformatted I/O. It can be used for other
I/O operations. This type of file maximizes transfer rates. There are neither record nor
block boundaries. When such a file is created by a Fortran program, it is not easily read-
able except by a Fortran program using a READ statement similar to the WRITE state-
ment which wrote to the file, and executing on a system similar to the one on which the file
was created.

t Not ANSI standard

Army Research Laboratory Supercomputer Facility - APG, MD 11-13

Fortran I/O Introductory User Guide - hlay 1993

11.11 Internal Files

An internal file is not a file at all, but rather is a type character array, array element, or variable, or some
substring thereof. Such entities are called internal files when used with READ and WRITE statements
to perform type conversion, in a manner analogous to the use of (external) files with READ and WRITE
statements to perform type conversion and data transfer between the interior and exterior of a Fortran
program.

READ and WRITE statements targeting internal files can perform only sequential, formatted I/O which
is not listrdirected. Such READ and WRITE statements are so identified by replacing the unit identifier,
[UNIT=] U, with the internal file identifier, [UNIT=] internal-fife-name. The internal file name is sim-
ply the corresponding array, array element, variable, or substring name.

A READ statement targeting an internal file obtains character data from the storage locations which con-
stitute the internal file, performs type conversion as specified by the format, and places the results in loca-
tions of the proper type specified by the iolist. A WRITE statement targeting an internal file obtains
values from locations specified by the iolist, performs type conversion as specified by the format, and
places the results in the storage locations which constitute the internal file. For example, to convert the
integer value in variable IVAL to a type character value, a Fortran program might contain

. . .
CHARACTER STRING*10

. . .
WRITE (STRING, ‘(110) ‘) IVAL

. . .

The result of this operation is that STRING contains a right-adjusted string, 10 characters long, left-filled
with blanks, representing as printable characters the integer whose value is in IVAL. Formerly (prior to
the 1977 Fortran standard), such conversions, involving Hollerith or character types, were performed using
a variety of nonstandard techniques, or by brute force programming dependent upon the specific binary
representation of the alphanumeric data.

If the internal file is a character variable or array element, or substring thereof, it consists of a single
record whose length is the length of the character variable, array element, or substring. If the internal file
is a character array, it consists of a sequence of records, one per array element, each record’s length being
the length of an array element. READing or WRITEing beyond the end of an internal file has the same
effect as READing or WRJTEing beyond EOF in an external file, unless the internal file is an assumed
size array, in which case no detection is performed. An internal file is always positioned at the beginning
of its first record, except during a READ or a WRITE. An internal file becomes defined by WRITEing
thereto, by execution of a READ statement which specifies the corresponding character storage locations
in its iolist, or by assignment of character data to the corresponding character storage locations. Internal
files may not appear as targets of I/O statements other than READ and WRITE.

11-14 Army Research Laboratory Supercomputer Facility - AF’G, MD

Introductory User Guide - May 1993 Fortran Code Conversion

12. Fortran Code Conversion

Oftentimes, programs developed and used on a particular machine under a particular operating system
with a particular compiler will not produce the same results, or even run to completion, when even one of
those three environments is changed. This chapter provides assistance to the programmer/user of a For-
tran program who is faced with such a problem. In addition, the information provided should be con-

sidered in the development of new programs or parts of programs. Specifically, the Fortran dialect

addressed is Cray Fortran release 5.0. Detailed information may be found in the Cray publications, CF77

Compiling System,

Volume 1: Fortran Reference Manual, SR-3071 5.0

Volume 2: Compiler Message Manual, SR-3072 5.0

Volume 3: Vectoritation Guide, SG-3073 5.0
Volume 4: Parallel Processing Guide, SG-3074 5.0

12.1 ANSI Standard Fortran Programs

Fortran programs which do not violate the 1977 ANSI Fortran Standard (henceforth referred to as “the
standard”) should be compatible with either of the ARLSCF Cray computers after compilation under
cft77 or, preferably, cf77.t Of itself, however, this does not guarantee duplication of results obtained on
other machines, nor even execution to the point considered by the programmer/user to be “completion.”
Nevertheless, we recommend most strongly that all Fortran programs be in conformity with the standard
in order to reduce the difficulties encountered when a program is moved to a different machine, operating
system, or compiler, and to facilitate the continuing task of program maintenance. If, in addition, the
program is structured and modular, then those difficulties will be minimized. The only exceptions to this
general principle should be those made to accomplish otherwise impossible tasks, or to achieve significantly
greater efficiency.

In any event, any nonstandard portions of the code, and any portions for which the standard admits of
more than one interpretation, should be clearly identified with comment lines, and an explanation pro-
vided of the programmer’s intent.

Some of the more common causes of a standard-conforming Fortran program’s failure to reproduce earlier
results include:

l The standard does not specify the positioning of a file when it is OPENed. Thus, a standard-
conforming program which does not explicitly position a file after OPENing it may find the file at
its beginning (ready to read the first record) on certain machines and at its end (ready to append an
additional record) on others. By default, ci77 positions files at their beginning when they are
OPENed.

b The standard makes use of the PROGRAM statement optional, and permits it to have arguments,
which the standard ignores. Such arguments are often used in other environments to provide file
connection information. cf77 ignores all arguments on a PROGRAM statement.

t cft77 is the compiler proper. cl77 invokes the compiling system, which performs considerable optimization in addition to that of
cft77. The compiling system consists of preprocessors gpp, fpp, and fmp, the compiler itself, cft.77, and the loader/linker
segldr. Henceforth, only the term 1977 will be used to identify the compiler, in accord with the preferred command syntax.

Army Research Laboratory Supercomputer Facility - AF’G, MD 12-1

Fortran Code Conversion Introductory User Guide - May 1993

. The standard specifies only that type DOUBLE PRECISION provide an approximation to the
value of a real number which is of greater precision than that provided by type REAL. It does not
specify how precise the approximation is to be. Because REAL entities use 64bit, words (and
DOUBLE PRECISION entities, two such words) on the Crays, results are expected to be more
precise than on most other machines. In fact, Cray single precision results are likely to be as precise
as other machines’ double precision results. If a program uses IF statements to compare noninteger
numeric values without an error band, the more precise Cray approximations may cause the pro-
gram to follow a different logical path.

12.2 Nonstandard Fortran Programs

The problems just described, which may require significant effort to identify and correct, begin to appear
trivial when one considers the seemingly endless difficulties caused by the combination of nonstandard
usage with unmodular and unstructured (especially “spaghetti”) code. Even when some nonstandard
feature used in a program being ported seems to be available under cf7 7, there is no a priori assurance
that the feature has the same syntax and functionality. The following paragraphs indicate the more com-
mon areas in which difficulty may arise when a program, which does not conform to the standard or which
incorporates poor programming practice, is ported to the ARLSCF Crays.

12.3 Likely Trouble Areas

12.3.1 Programs from a COS Environment

In addition to the material presented herein, Appendix H of the Cray publication, CF77 Compiling System,
Volume 1: Fortran Reference Manual, SR-3071 5.0, lists differences between cft and cfi.77.

12.3.2 Programs from an IBM Environment

In addition to the material presented herein, pay particular attention to nonstandard names of commonly
available, or otherwise standard, intrinsic functions (e.g., ARSIN vs. ASIN, ARCOS vs. ACOS, etc.).

12.3.3 Programs from a VAX Environment

In addition to the material presented herein, pay particular attention to:

ACCEPT and TYPE statements vs. READ and PRINT

VIRTUAL statements vs. DIMENSION

VAX specific system calls

Nonstandard specifiers in OPEN, CLOSE, and INQUIRE statements

CHARACTER and other type entities in the same COMMON block

Use of * in EXTERNAL statements

Edit descriptors without length specification, except for A

Nonstandard use of the PARAMETER statement

D in column 1 to indicate debug statements

12-2 Army Research Laboratory Supercomputer Facility - APG, MD

Introductory User Guide - May 1993 Fortran Code Conversion

12.3.4 Character Set

The standard character set is

A through Z
0 through 9
(blank) = + - * / () , . $ ’ :

In addition, Cray Fortran recognizes

a through z
” 1 . - (tab) @ (@ is used in names created by 477)

Except in type CH.ARACTER or Hollerith values, the compiler does not distinguish between upper and
lower case letters. Thus, for example, the keywords write and WRITE are the same, as are the variable
names result and RESULT.

12.3.5 Lines

cf77, in accord with the standard, accepts Fortran code in columns 1 through 72. The -N80 option
extends this to columns 1 through 80. Lines may be as long as 96 characters; the portion beyond column
72 or column 80 is ignored by the compiler.

The standard accepts as many as 19 continuation lines, permitting a single statement to span as many as
20 lines. cf77 accepts as many as 99 continuation lines, permitting a single statement to span as many as
100 lines.

Neither the standard nor cf77 permit more than one statement or parts of more than one statement on
one logical line (first line of statement and all of its continuation lines).

12.3.6 Tabs

As an extension to the standard, cf77 recognizes the tab character within source code, with the following
interpretation:

l If a tab character is in column 1, the next character determines the line’s interpretation: a nonzero
digit indicates a continuation line; otherwise, the line is a statement’s initial line.

l A tab character must not occur to the left of a statement label.

l A tab character within the statement is compiled as a blank.

l Tabs are expanded to varying amounts of white space in the compiler listing output, to produce
reasonable indentations and other spacing.

l Regardless of how it might be expanded, a tab is counted as contributing one column to the length
of a line of source code.

12.3.7 Comments

The standard specifies that any entirely blank line, and any line with a C or * in column 1, is a comment.
cff 7 extends this to include any line with a c or ! in column 1. Furthermore, embedded comments are
recognized: whenever an ! appears outside of a character constant and not in column 6, the portion of the
line to its right is comment. (In column 6, an ! is a continuation character.)

Army Research Laboratory Supercomputer Facility - APG, MD 12-3

Fortran Code Conversion Introductory User Guide - hlay 1993

12.3.8 D in Column 1

Certain compilers treat a D in column 1 as a debugging flag. The cft77 compiler of the cff7 compiling
system will consider this a fatal error. However, the fpp preprocessor of the cff7 compiling system pro-
vides a “switch” (k, enabled by default) for use with its enable/disable (-e/-d) options which causes such
statements to be treated as comments. This functionality is available when fpp is used in its full precom-
piler mode and also when all but its TIDY functionality is suppressed.

12.3.9 Names

The standard permits names of programs, subprograms, common blocks, arrays, and variables to be up to
six characters long. cf77 permits those names to be as long as 31 characters.

12.3.10 Local Variables: Retention of Value

Some programs, particularly older ones, depend upon the notion that, once a RETURN from a subpro-
gram is effected, variables and arrays local to that subprogram retain their values until that subprogram is
again invoked, at which time those values are once again available. That notion is not in accord with the
standard, nor is it supported by cf77.

Some programs, particularly older ones, depend upon the notion that placing the entities just described in
COMMON within the subprogram is sufficient to cause retention of their values as just described. That
notion is not in accord with the standard, nor is it supported by ~377.

In accord with the standard, cf77 causes all entities (whose values are capable of changing) within a sub-
program to become undefined upon execution of a RETURN from that subprogram except:

. entities specified therein by SAVE statements

l entities specified therein in blank COMMON

l entities specified therein in a DATA statement, which entities have neither been redefined nor
become undefined in any invocation of that subprogram

l entities specified therein in a named COMMON block and in the same named COMMON block
in at least one other program unit that references, directly or indirectly, that subprogram (i.e.,
other program unit that is in the invocation sequence for the current invocation of that subpro-

gram)

12.3.11 Recursion

As an extension to the standard, 1377 permits a subprogram to reference itself if its FUNCTION or
SUBROUTINE statement begins with the keyword RECURSIVE and it is compiled in stack mode, or
if it is compiled with the cf77 option -Wf”-o recursive”.

In accord with the standard, no function whose name appears in the I/O list of an I/O statement may
itself invoke I/O statements, not even to issue an error message.

12-4 Army Research Laboratory Supercomputer Facility - AF’G, MD

Introductory User Guide - May 1993 Fortran Code Conversion

12.3.12 I/O

12.3.12.1 External Files

Connections

Connection and assignment of files and file names by means of arguments on the PROGRAM statement
(common practice in a CDC environment) is ignored. Files should be connected/disconnected (and created
as required) by use of the OPEN and CLOSE statements.

Standard or System Input and Output

Standard or system input and output should be referenced as unit “+” rather than by some system-

dependent number. Unit “*” must be neither OPENed nor CLOSEd. cf77 preconnects standard error,
standard input, and standard output to units 0, 5, 6, respectively, and to units 100, 101, 102, respectively.
Connections to units 0, 5, 6 may be changed, but not those to units 100, 101, 102.

Preconnected Files

cf77 preconnects standard error, standard input, and standard output to units 0, 5, 6, respectively, and to
units 100, 101, 102, respectively. Units n are preconnected to files fort.n, where n has values 1, 2, 3, 4, 7,
. . . . 99.

Positioning

The standard does not specify file position at OPEN. Whenever a file is OPENed with other than
STATUS=NEW, it should be positioned explicitly at the desired position. REWIND positions a file
just before its first record, ready to READ that record. READing a file to its end (use the END=
specifier in the READ statement) and BACKSPACEing one record positions it just after its last record,
ready to append an additional record.

Number of Open Files

The maximum number of files which can be open simultaneously per process is 60 on the Cray X-MP and
100 on the Cray-2 (nonstandard). Standard input, standard output, and standard error are always open
and do not contribute to the count of open files.

Multifile Files

These are not supported in the normal course of events, but may be used on the Cray X-MI’ for
UNFORMATTED files if certain system-level action is taken (do man blocked).

12.3.12.2 Recursion

In accord with the standard, no function whose name appears in the I/O list of an I/O statement may
itself invoke I/O statements, not even to issue an error message.

12.3.12.3 List-Directed Output

The standard provides and cf77 supports list-directed output. However, the specific appearance of the
output (number of items per line, amount and positioning of white space) is not defined by the standard,
and is unlikely to be the same under cf77 as it was in the original environment of the program.

Army Research Laboratory Supercomputer Facility - APG, MD 12-5

Fortran Code Conversion Introductory User Guide - hlay 1993

12.3.12.4 NAMELIST I/O

As an extension to the standard, cf7 7 provides NAMELIST I/O. Its syntax and operation may not be
the same as in the original environment of a program using it.

12.3.12.5 Newline Suppression

ANSI Standard Fortran 77 causes every sequential, formatted WRITE statement to go to the next line as
its last act and provides no means by which this may be suppressed, even though such suppression might
be useful, e.g., in the output of prompts during interactive input. As an extension to the standard, Cray
Fortran provides the edit descriptor, $, which, if in the logically last position of the output format,
suppresses movement to a new line upon completion of the WRITE.

12.3.13 INCLUDE Files

Although nonstandard, the INCLUDE statement is recognized by cf77. It may not be continued onto a
second line. The cf77 option -1 affects its interpretation.

12.3.14 The PROGRAM Statement

Use of the PROGRAM statement is optional under the standard and under cf77. Its use is recom-
mended for portability and because certain Gray utilities (e.g., FLOWTRACE) require it. cf77 ignores all
arguments on this statement.

12.3.15 Types

cf77 recognizes types:

REAL standard
REAL*n nonstandard

n=4,8; same as REAL
n=16; same as DOUBLE PRECISION

DOUBLE PRECISION standard
DOUBLE nonstandard; same as DOUBLE PRECISION

INTEGER standard
INTEGERen nonstandard

n=2,4,8; same as INTEGER

CHARACTER standard
LOGICAL standard
COMPLEX standard
DOUBLE COMPLEX nonstandard; see the second following section

POINTER nonstandard
Boolean nonstandard; no type statement

In addition to the standard statement IMPLICIT type, the nonstandard IMPLICIT NONE is recog-
nized, requiring explicit typing of all variables and arrays.

12-6 Army Research Laboratory Supercomputer Facility - APG, MD

Introductory User Guide - May 1993 Fortran Code Conversion

12.3.15.1 INTEGER

By default, cf77 uses a 46-bit representation for integers, for a range

-245 < I < 245 -- f or approximately -1014 5 I < 1014

64-bit integers can be specified with cf77 -Wf”-ibd...” for a range

-263 < I 5 263, or approximately -10” 5 I < 10lg

12.3.15.2 REAL, DOUBLE PRECISION, COMPLEX,
DOUBLE COMPLEX

REAL and DOUBLE PRECISION values, and each component of a COMPLEX value, have magni-
tudes in the range

2-‘l*’ < R 5 2*lgo, or approximately .367*10-2465 < R < .273*1024”6

The -Wf”-dp” compilation option causes nonstandard type DOUBLE COMPLEX to be recognized,
and types DOUBLE COMPLEX and DOUBLE PRECISION to be compiled exactly as if they were
COMPLEX and REAL. This is a particularly useful option because it permits the use of single precision
on the Crays, which is generally at least as precise as double precision on other machines, while avoiding
the labor of actually changing the code, with its possibly disastrous results were the code to be returned to
some other machine. Single precision on the Crays yields about 14 significant digits, and double precision,
about 28.

NOTE CAREFULLY that, if the type DOUBLE COMPLEX is used, and the -Wf”-dp” compilation
option is not used, there will be no error message, nor even a warning or ANSI noncompliance message,
except about variable names longer than the standard six characters. The result of the compilation will be
to treat all entities, except the first one, in the DOUBLE COMPLEX statement as DOUBLE PRECI-
SION, and to create a new DOUBLE PRECISION variable named COMPLEXoriginal-first-name.

12.3.15.3 CHARACTER

Collating Sequence

The standard requires only that A through Z be in the normal sequence, that 0 through 9 be in the normal
sequence, that the letters and digits not be intermixed, and that (blank) occur before both A and 0. cf77
uses the ASCII collating sequence.

String Delimiters

The standard CHARACTER string delimiter is ‘I”‘. cf77 accepts “ “’ and “‘I” as string delimiters. Of
course, the opening delimiter must be the same as the closing one.

Character Relational Expressions

Relational expressions involving two character expressions are permitted by the standard and by cf77.
However, because the collating sequence is not completely specified by the standard, we recommend the
standard intrinsic functions LGE, LGT, LLE, and LLT be used. These functions always make com-
parisons according to the ASCII collating sequence, regardless of which sequence is native to a particular
environment. Of course, the equality (.EQ. and .NE.) comparisons present no such problem.

Hollerith

Hollerith data is nonstandard. It is usable (but obsolete) as a form of Boolean. For portability and
greatly increased ease of use (insensitivity to the length of machine words and no necessity to count char-
acters), Hollerith information should be replaced with type CHAR.ACTER information.

Army Research Laboratory Supercomputer Facility - APG, h4D 12-7

Fortran Code Conversion Introductory User Guide - hlay 1993

12.3.15.4 Boolean Values

Boolean values are nonstandard. A Boolean constant displays the internal representation of a 64-bit Cray
word. There are no Boolean variables or arrays, nor is there a Boolean type statement. No user-specified
function can produce a Boolean result, but certain nonstandard intrinsic functions can.

When one operand of a binary arithmetic or relational operator is Boolean, the operation is performed as
if the Boolean operand were of the type of the other operand. When both operands are Boolean, the
operation is performed as if both operands were of type INTEGER.

A Boolean constant can be written as:

octal 1 through 22 octal digits suffixed B (e.g., 177B), or 1 through 22 octal digits delimited
with apostrophes or quotation marks prefixed with the letter 0 (e.g., 0 ‘177 ‘). Stored
right-adjusted in memory with leading zeroes. If all 22 digits are used, the leftmost one
can be only 0 or 1.

hexadecimal 1 through 16 hexadecimal digits delimited with apostrophes or quotation marks prefixed
X (e.g., X’lFF’). Stored rightradjusted in memory with leading zeroes. Digits may be
signed (e.g., X’-1FF’).

Hollerith 1 through 8 characters prefixed nH, n being the character count (e.g., GHABC 12). 1
through 8 characters delimited with apostrophes or quotation marks suffixed H (e.g.,
‘ABC 12 ‘H). Stored lefbadjusted in memory with trailing blanks. If L or R is used
instead of H, nulls rather than blanks are used for padding, and storage is leftc or right-
adjusted, respectively.

12.3.16 Type Conversion

Numeric and Boolean (nonstandard) types may be converted among each other implicitly by using assign-
ment statements, explicitly by using the intrinsic type conversion functions, and implicitly by using mixed
type expressions. All three techniques conform to the standard, but the last one is bad practice and
fraught with hazard.

Conversion from/to character (including Hollerith) information has been accomplished in any number of
ways, from brute force code dependent upon the details of machine architecture and character encoding
schemes, to the use of nonstandard facilities such as DECODE and ENCODE. cf77 supports
DECODE and ENCODE, but these techniques are obsolete, cumbersome, and vary from one machine to
another. The standard (and exceptionally convenient) method of converting from and to type CHARAC-
TER is to use READ and WRITE statements in almost exactly the same manner as for I/O from and to
external files. See the chapter, “CF77 I/O,” for a brief description.

12.3.17 Logical Expressions

The standard does not specify the machine representations for .TRUE. and .FALSE.. cf77 stores
.TRUE. as a word with high order bit set to one and all others zero. .FALSE. is stored as a word with
all bits set to zero. Because these representations vary among compilers, the Boolean values for .TRUE.
and .FALSE. should not be used, but rather .TRUE. and .FALSE. themselves.

12.3.18 Relational Expressions

Whenever relational expressions are used with noninteger numeric entities, error bands should be used to
avoid obtaining incorrect results due to insignificant variations in the low order bits. This problem is par-
ticularly acute when codes are moved from one machine or compiler to another. Variations are due not
only to differing word lengths, but also to differing algorithms used for REAL and DOUBLE

12-8 Army Research Laboratory Supercomputer Facility - AF’G, MD

Introductory User Guide - May 1993 Fortran Code Conversion

PRECISION arithmetic.

Character relational expressions (except for those testing equality) should be replaced with the standard
intrinsic functions LGE, LGT, LLE, and LLT (which always use the ANSI collating sequence) so that
variations in collating sequences from one machine or compiler to another will not affect the result.

12.3.19 IF Statements

The 2-branch arithmetic IF is nonstandard and obsolete, but still usable under cf? 7. Of form

IF (ezp) Sol,&?

the statement transfers control to statement label 1 if the arithmetic expression has a nonzero value, other-
wise to statement label 2.

The indirect logical IF is nonstandard and obsolete, but still usable under 1377. Of form

IF (ezp) sll,sl2

the statement transfers control to statement label 1 if the logical expression has value .TRUE., otherwise
to statement label 2.

The S-branch arithmetic IF is standard. Of form

IF (ezp) 81i,&,S13

the statement transfers control to statement label 1 if the arithmetic expression has a negative value, to
statement label 2 if the arithmetic expression has a zero value, or to statement label 3 if the arithmetic
expression has a positive value.

All three of these statements are easily replaced with logical or block IF statements, both of which are
standard, greatly improve program readability, and permit the compiling system to perform code optimi-
zations.

12.3.20 DO Loops

Some environments cause DO loops (whose DO statement is executed) to always be executed at least once,
even if the values of the DO loop controlling expressions otherwise would cause the loop to be bypassed
and not executed at all. This is not the case under cf77, which adheres to the standard in this respect.
The -Wf”-ej” compiling option forces DO loops to be executed at least once, regardless of the values of
the DO loop controlling expressions.

Although the standard permits DO loop controlling expressions to be REAL or even DOUBLE
PRECISION, this is extremely bad practice because the iteration count becomes dependent upon
insignificant variations in the low order bits. This problem is particularly acute when codes are moved
from one machine or compiler to another.

As an extension to the standard, cf77 supports DO WHILE loops and END DO statements. The syntax
and functionality may not be the same as in a program’s original environment.

12.3.21 Array Operations

As an extension to the standard, cf77 permits the use of arrays as primaries in assignment statements.
The operations are elemental; that is, if A, B, and C are conformable arrays, then

C =A*B

means

Army Research Laboratory Supercomputer Facility - APG, MD 12-9

Fortran Code Conversion Introductory User Guide - hlay 1993

DO 20 I = 1, NRcXl’S
DO 10 J = 1, NCOLS

C(I,J) = A(I,J) * B(I,J)
10 COhT INUE
20 CONTIhTuE

12.3.22 Masking, Shifting, and Bit Manipulation

As an extension to the standard, cf77 provides functions which perform logical product, sum, difference,
equivalence, complement, shift (circular, left, right), merge, and population count operations. In addition,
cf7 7 provides integer bit manipulation functions in accord with MIL-STD-1753. Pay particular atten-
tion to the effects of differing word lengths between machines.

12.4 Useful Utilities

12.4.1 Code Checking

The cf77 compiling system itself has excellent code checking capabilities. We recommend that, until a
program is determined to be error free, at least the following options be used to provide a full suite of
compilation and execution diagnostics.

cf77 -F -g -Wf”-ecimnsx -ooff -mO -Rabc" j2es.f

12.4.2 TIDYing

Code “tidying” or “beautifying,” although entirely cosmetic, can make a remarkable improvement in the
legibility and, hence, maintainability, of intricate, lengthy, unstructured programs with statement labels
not in numerical order and with FORMAT and DATA statements scattered throughout.

The cf77 compiling system includes the fpp preprocessor, which can produce vectorization of source code
beyond that provided by cft77. Because of its extensive parsing and analysis capabilities, fpp is more
than an adequate processor to beautify source code. The command

fpp -dacdehjlmpsuvy015 -ql -r... --ny... ji1es.f

disables (-d) almost all (see the discussion at the end of this section) functionality of fpp except TlDYing,
with output to standard out. The -r and --n options use their own set of switches to enable and disable,
respectively, various features of code beautification. There are 21 such switches which provide the user
with the ability to select exactly what is to be done. Among the more popular features, with very abbrevi-
ated descriptions and their default settings, are:

a places inline comments on preceding line if available inline space becomes insufficient (on)

C ensures space after comma in list (on)

el p e ensures space around =, and p, around + and - (on)

f positions FORMAT statements just before the END (off)

j, t j ensures space around ** and //, and t, around * and / (off)

k, o, q k ensures space around .AND., .OR., .EQV., .NEQV. (off); o ensures space around all logi-
cal operators (off); q is a combination of k and o which treats IF statements differently (on);
only one of the three may be on

12-10 Army Research Laboratory Supercomputer Facility - APG, MD

Introductory User Guide - May 1993 Fortran Code Conversion

m modifies spacing rules to permit short, otherwise two-line, statements to fit on one line (on)

n ensures space around nonsubscript parentheses (off)

r generates a block of comments listing externals (off)

8 applies j, p, t spacing rules to inside of parentheses (off)

X shorthand specification of a popular style: format relabeling initialized at 900, other state-
ment relabeling initialized at 100, both with an increment of 10, and insertion of comments

summarizing externals (off)

Y beautifies only optimized blocks and echoes remainder of program (on)

These and other features can be selected and modified by the use of directives within the source files,

applying to portions or to the entireties of the files. The SWITCH directive is the only way to change

FORMAT and other statement label initial values and increments, indentations for different classes of
statements, placement of statement labels, placement of comments, and the continuation line character.

For example, the directives

CFPP$ SWITCH,FORMAT=900:10,RENUMB=100:10,LABELS=5:R,CONCHR=+
CFPP$ SWITCH,INDDO=3,INDIF=3,INDCN=3,LSTCOL=31

renumber FORMAT and other statement labels to starting values of 900 and 100, respectively, with
increments of 10; right-adjust statement labels into column 5; specify “+” to be the continuation line
character; specify that DO blocks and IF blocks be indented three columns for each nesting level; specify
that continuation lines be indented three columns; and specify that column 31 be the last column available
for indentation, i.e., that no statement begin beyond column 31. Except for the continuation line charac-
ter, these illustrative values are the TIDY defaults.

Detailed instructions for the use of the TIDY function of fpp can be found in the Cray publication, CF77
Compiling System, Volume 4: Parallel Processing Guide, SG-3074 5.0, pages 33 ff and 293 ff.

As stated previously, it is not quite possible to disable all but the TIDY functionality of fpp. One charac-
teristic of fpp which cannot be disabled and which is highly visible to the user desiring ANSI Standard
Fortran 77 output is the suffixion of certain Cray Fortran INTRINSIC subprogram names with an @
symbol. That this characteristic cannot be disabled is not addressed in the level 5.0 Cray documentation.
This characteristic causes no difficulty at all, and, in fact, is a desired result, if the resulting code is then to
be compiled by cft77, with or without intervening fmp processing. However, if the output is intended to

be Fortran 77 source code with no greater degree of nonstandardness than the input, then the presence of
the @ symbols is a corruption of the code.

There are several corrective strategies. One of the simplest is based on the realization that the @ symbols
will almost certainly be sparse. In this case, it is practical to execute grep --n @ on even large source files

to identify and examine those lines containing @ symbols. With or without the grep, appropriate editors
can be used to find and remove the offending @ symbols.

For those cases where the source code is so lengthy or so riddled with @ symbols that manual correction is

undesireable, the fpp output can be piped through the filter of Figure 12.1 to remove exactly those @ sym-
bols inserted by fpp.

12.4.3 fsplit

fsplit [-s] [fil es is a UNICOS utility which splits up one or more files containing Fortran program ele-]

ments into a number of other files, each one containing one program element. Each main PROGRAM,
BLOCKDATA, FUNCTION, and SUBROUTINE constitutes one element. This functionality can
make less onerous the conversion of larger programs and the casting of such programs into a makefile
structure. The -s option strips trailing blanks from lines.

Army Research Laboratory Supercomputer Facility - APG, MD 12-11

Fortran Code Conversion Introductory User Guide - May 19%

gawk ’
BEGIN { split(“MOD@ AI333 IABS@ I NT@ REAL@”

“MAX@ MAXO@ MIW+ MINO@ AND@”

“IAND@ OR@ IO%? ISHFT@ SHIFTL@”
“SHIFTI@ CVMGX@ CVMGN@ CVMGP@ CVMGT,”

” WMGz@”
” mo d@ abs@ iabs@ i n t@ real@”

“max@ maxO@ mi n@ mi nO@ a n d@”

“iand@ or@ ior@ ishft@ shiftl@”

“shift@ cvmgn-@ c vmg n@ cvmgp@ c vmg t@”

” c vmg z@” ,
n = split(“MOD ABS IABS INT REAL ”

“MAX MAX0 MIN MINO AND”
“IAND OR IOR I SHFT SHIFTL”
“SHIFTR CWMGM CVMGN ‘Z’MGP CVMGT”
” CVMGZ ”
“mod abs iabs int real”
“max max0 min mi n0 and”
” i and or ior ishft shiftl”

“shiftr c vmgm cvmgn cvmgp cvmgt”

“cvmgz”,

>

{ for (i = 1; i <= n; i++)
gsub(mod[i] ,orig[i])
print

1 ’

Figure 12.1. Filter for Removing Suffixed @ Symbols in fpp Output

12.4.4 flint

:

:

:

\
mod)

:

:

:

\
orig)

flint (Fortran-lint) is third-party software which performs a global analysis of Fortran source code and
reports a wide range of actual and potential problems and instances of poor programming practice. There
are many options to govern its specific behavior. flint with neither options nor file names produces a help
screen. flint -demo executes a small demonstration case. man flint yields the man page. A hard copy
manual which provides the same information as the man page, but in greater detail, is available.

12-12 Army Research Laboratory Supercomputer Facility - APG, MD

Introductory User Guide - May 1993 Interlanguage Communication

13. Interlanguage
Communication

The considerations expressed in this chapter apply in general to programs whose source codes incorporate
more than one language, but the specific techniques pertain to the ARLSCF Cray computers. By the very
nature of the topic, much of the material is not within any standard, but certain parts could easily be res-
tricted thereto, e.g., Fortran names could be restricted to being no longer than six characters (ANSI Stan-
dard Fortran 77).

For convenience, “program” refers to any portion of a program: the entire program, a main program,
subroutines, functions, etc.

Additional information may be found in the Cray publications, UNICOS Fortran Library Reference
Manual, SR-2079 6.0 (Sections 1 and 8, and Appendix A), UNICOS Standard C Library Reference Manual,
SR-2080 6.0, (Interlanguage Communications), UNICOS Math and Scientific Library Reference Manual,
SR-2081 6.0, Cray Standard C Programmer’s Reference Manual, SR-2074 3.0, CF77 Compiling System,
Volume 1: Fortran Reference Manual, SR-3071 5.0, and Interlanguage Programming Conventions Techni-
cal Note, SN-3009.

13.1 Fortran and C

This section presumes CF77, version 5, and the Cray Standard C Compiler, version 3. Earlier compilers
may be more restrictive.

In general, the burden of interlanguage communication rests on the C portions of the program; the For-
tran portions are written as if they were communicating with other Fortran programs.

13.1.1 Obscure Restriction

There is an ANSI Standard Fortran 77 restriction that dummy arguments, or dummy arguments and enti-
ties in COMMON, whose storage is made to overlap by virtue of their association with particular actual
arguments, must not have their values changed within the referenced subprogram. For example, calling

with

or calling

SUBROUTINE SUB(A,B)

CALL SUB(C,C)

SUBROUTINE SUB(A)
COMMON /xxx/ B

with

COMMON /xxx/ C

CALL SUB(C)

Army Research Laboratory Supercomputer Facility - APG, MD 13-l

Interlanguage Communication Introductory User Guide - ;2lay 1993

causes overlap between A and B. In either case, the values of A and B must not be changed within the
subroutine.

This restriction is extended in Cray Fortran 77 as follows, If the storage of a pointer dereference overlaps

the storage of another variable, dummy argument, or pointer dereference, then neither may be modified
within that Fortran program.

This restriction does not apply to programs written entirely in ANSI Standard C. The ANSI C standard
specifies the exact sequence in which operations are to be performed; therefore, there is no ambiguity con-
cerning which value will be resident in a memory location after the execution of C code equivalent to the

Fortran example just presented.

The restriction does apply to Fortran programs invoked by C programs, but not vice versa.

Optimization in general, and in particular each of Cray scalar optimization, vectorization, and paralleliza-
tion, abrogate the C standard’s requirements concerning order of operations (except, of course, that the
computation still must be algebraically correct, within precision limits), and so, if there is optimization,
the Fortran-like restriction is asserted even in otherwise standard C programs.

Finally, there is a known bug in the Cray Standard C compiler (release 3.0.4.8) which bears upon this
topic. For example, the ANSI Standard C program

#include <stdio.h >
int corn = 1;
sub(int *a){

corn = 2;
corn = *a;

>
main(){

sub(&com);
printf(“%d\n”, corn);
return 0;

even when compiled with the -h stdc option, prints 1, whereas it should print 2. A workaround is to
program in Standard C as if the Fortran restriction applied. The bug is scheduled for correction in a
future release (cc -V reports the currently installed version of the C compiler).

13.1.2 Invoking Subprograms

13.1.2.1 Names

Acceptable Fortran names are a subset of acceptable C names. Fortran names are restricted to 31 charac-
ters consisting of letters, digits, and the underscore character. The first character must be a letter. For-
tran maps all lower case letters into upper case, except for values in character strings. In addition, For-
tran will accept certain special characters in global names (functions, subroutines, common blocks), but
Fortran programmers should not utilize this feature in creating their own global names. Therefore, the
names of C functions invoked from Fortran are restricted to be no longer than 31 characters consisting of
upper case letters, digits, and the underscore, and beginning with a letter.

C functions invoked from Fortran are declared either implicitly by use or explicitly with an EXTERNAL
statement.

The names of Fortran subprograms invoked from C suffer no restrictions beyond normal Fortran require-
ments. Because Fortran maps lower case letters into upper case, the name by which the program is
invoked in C must be upper case, regardless of any lower case which might have been used in writing the
Fortran subprogram.

13-2 Army Research Laboratory Supercomputer Facility - APG, MD

Introductory User Guide - May 1993 Interlanguage Communication

C programs invoking Fortran programs should declare them with the storage class keyword fortran, as in

fortran double function-name (...)

13.1.2.2 Arguments

Fortran always associates actual and dummy arguments by address. By default, C associates actual and
dummy arguments by value, unless they are arrays or executables, in which case they are always associ-
ated by address. Therefore, when C and Fortran invoke each other, C programs passing actual arguments
other than executables and arrays to Fortran must do so explicitly by address, and C programs receiving
actual arguments other than executables and arrays from Fortran must treat the associated dummy argu-
ments as pointers. C and Fortran programs may pass/receive arrays to/from each other just as they nor-
mally do (because both use pass by address in this case); however, see the paragraphs concerning names,
arrays, and types. Similarly, because both languages pass subprograms by address, C and Fortran pro-
grams may pass/receive subprogram names to/from each other just as they normally do; however, see the
paragraphs concerning names, arrays, and types. As calling sequences become more intricate, particular
attention must be devoted to insuring that arguments always are passed/received according to the proper
semantics.

The value returned by a Fortran function is a value, not an address.

Fortran subroutines can be invoked from C as if they were Fortran functions, with the sole difference
that they do not return a value. Therefore, C programs invoking Fortran subroutines should declare them
to be of type void.

13.1.3 Data Types

13.1.3.1 Correspondence of Types

char
short
int
long
float
double
long double
float complex
double complex

Fortran

INTEGER
INTEGER
REAL
REAL
DOUBLE PRECISION
COMPLEX
COMPLEX
LOGICAL
CHARACTER

bits

information memory

8 8

24/32 64

46164 64

64 64

64 64

64 64

128 128
64,64 128

64,64 128
1 64

variable

13 .1.3.2 Fully Compatible

Fortran INTEGER, REAL, and COMPLEX values can be shared directly (by passing as arguments or
through structures and COMMON blocks) with C int and long, float and double, and float complex
and double complex, values, respectively.

Army Research Laboratory Supercomputer Facility - APG, MD 13-3

Interlanguage Communication Introductory User Guide - hIay 1993

13.1.3.3 Almost Fully Compatible - Double Precision

Fortran DOUBLE PRECISION values can be shared directly (by passing as arguments or through
structures and COMMON blocks) with C long double values, as long as the Fortran compilation does
not disable DOUBLE PRECISION.

13.1.3.4 Almost Fully Compatible - Pointers

Fortran POINTER values can be shared directly with those C pointer values which are word addresses.

13.1.3.5 Convertible - Logical Values

When C and Fortran are to communicate logical values to each other, the C program units should incor-
porate the statement

include tfortran.h>

The f0rtran.h header file provides the functions

_btol () returns the long int values, Fortran .FALSE. and Fortran .TRUE., for the long int
arguments 0 and nonzero, respectively.

-Rob () returns the long int values, 0 and 1, for the arguments, address of a Fortran .FALSE.,
and, address of a Fortran .TRUE., respectively.

Figure 13.1 presents a simple C and Fortran program exemplifying the use of these features. A few blank
lines have been added to improve readability. Note the -Rob invocations in CFCN - the arguments are
addresses by virtue of the invocation of CFCN from Fortran. Had the _ltob invocations been in main,
their arguments, unlike those of _btol, would have been prefixed with &.

13.1.3.6 Convertible - Character Values

Both Fortran and C support character strings, but with different semantics.

Character strings used in Fortran programs are generally stored in CHARACTER variables or arrays
thereof rather than in arrays of single characters. CHARACTER data is allocated in such a way that
the same amount of storage is allocated by each of the following statements, which define a CHARAC-
TER variable of length 80 (A), a CHARACTER array of 80 elements, each of length 1 (B), and a
CHARACTER array of 16 elements, each of length 5 (C):

CHARACTER A*80, B(80)*1, C(lt+S

A CHARACTER dummy argument can be defined as

CHARACTER*(*)

which means that the length of the argument is not available at compile time and will be passed to the
program at execution time.

In general, Fortran CHARACTER entities (scalars, individual array elements, and substrings thereof)
are not restricted to beginning on word boundaries. Fortran CHARACTER entities have an associated
length which specifies the number of characters in the entity. A CHAR.ACTER dummy argument can be
associated with any CHARACTER entity. A CHARACTER actual argument is a descriptor contain-
ing the word address, the bit offset, and the number of characters in the entity.

C does not support a character string type, but, by convention, C character pointers point to character
strings terminated with a zero byte, and several functions in the C library process such character strings.
G may allocate character storage which does not begin on word boundaries. A C character pointer, like a
Fortran CHARACTER descriptor, contains a character location, but, unlike the descriptor, it does not

13-4 Army Research Laboratory Supercomputer Facility - APG, MD

Introductory User Guide - May 1993 Interlanguage Communication

patton> cat 1ogicall.c

include <stdio.h>
include <fortran.h>
define TRUE 1
define FALSE 0

* the C convention */
* the C convention */

fortran int FFCN (long int *, long int *);

long int ctrue, cfalse, ftrue, ffalse;
int rtnval;

ctrue = TRUE;
cfalse = FALSE;
ftrue = _btol(ctrue);
ffalse = _btol(cfalse);
printf (“\n ctrue, cfalse = %d, %d\n”, ctrue, cfalse);
printf (” ftrue, ffalse = %d, %d\n”, ftrue, ffalse);
printf (” ***+***** end main - begin FFCN *********\n”);
rtnval = FFCN (&ftrue, &ffalse);

>

patton> cat logical2.f

INTEGER FUNCTION FFCN (A,B)
LOGICAL A, B, C, D
INTEGER CFCN, RTNVAL

DATA C,D /.TRUE., .FALSE./

WRITE (*,*) ‘A, B
, = , A, B

WRITE (*,*) ‘C,
WRITE (*,*) +tt*t:t

,
C, D

end FFCN’- begin CFCN ******t**,

RTNVAL = CFCN (C,D)
FFCN = 0

RETURN

END

patton> cat logical3.c

include <stdio.h>
include <fortran.h>

CFCN (e , f)
long int *e, *f;

{
long int ce, cf;

Army Research Laboratory Supercomputer Facility - APG, MD 13-5

Interlanguage Communication Introductory User Guide - hlay 1993

printf (” e, f = %d, %d\n”, *e, if);
ltob(e);

:; : :ltob(f);
printf (” ce, cf = %d, %d\n”, ce, cf);

1

patton> cc -c *.c
1ogicall.c:
logical3.c:
patton> cf77 -c *.f
logical2.f:
patton> segldr *.o
patton> ./a.out

ctrue, cfalse
ftrue, ffalse
********* end

A, B

G, D
********* end

e, f

ce, cf

= 1, 0
= -1, 0
main - begin FFCN ****et***
= T, F

T F
~FCN ’ - begin CFCN a********
= -1, 0

= 1, 0

pat ton>

Figure 13.1. C and Fortran Communication - Logical Values

contain a length; therefore, it cannot be passed to a Fortran program which expects a CHARACTER
argument.

When C and Fortran are to communicate character values to each other, the C program units should
incorporate the statement

include <fortran.h >

The f0rtran.h header file provides the type and the functions

-fed defined type which matches the Fortran CHARACTER descriptor. An object
with type fed can be passed to or received from a Fortran program whose
corresponding dummy or actual argument has type CHARACTER. -fed is not
guaranteed to work in casts.

_cptofcd (ccp,len) returns a Fortran CHARACTER descriptor from the C character pointer ccp
and unsigned byte length len. The resulting descriptor points to the same string
as ccp and can be passed to a Fortran program expecting a CHARACTER
entity.

returns a C character pointer from fed. fed is of type -fed and is effectively a
Fortran CHARACTER descriptor.

returns the byte length from fed. fed is of type -fed and is effectively a Fortran
CHARACTER descriptor.

fcdtocp (fed)

fcdlen (fed)

Figure 13.2 presents a simple C and Fortran program exemplifying the use of these features. A few blank
lines have been added to improve readability.

13-6 Army Research Laboratory Supercomputer Facility - APG, MD

Introductory User Guide - May 1993 Interlanguage Communication

patton> cat string1.c

include <stdio.h>
include <string.h>
include <fortran.h>

fortran int FFCN (_fcd,_fcd);

yain ()
int clenl, clen2;
char +cstringl = “stringl”, *cstring2 = “string.2”;

int rtnval;

clenl = strlen(cstring1);
clen2 = strlen(cstring2);

printf (“\n >%s< %d\n” , cstringl,clenl);
printf (” >%s< %d\n”,cstring2,clen2);
printf (” *****+*** end main - begin FFCN ******t**\n”);

rtnval = FFCN (_cptofcd(cstringl,clenl), -cptofcd(cstring2,clen2

>

patton> cat string2.f

INTEGER FUNCTION FFCN (A,B)
CHARACTER*(*) A, B
CHARACTER*(20) C, D, E
INTEGER FLENl, FLENB, FLENJ, FLEN4, FLEN5
INTEGER CFCN, RTNVAL

DATA C,D,E /‘string..3’, ‘string...4’, ‘string....5’/

FLENl = LEN(A)
FLEN2 = LEN(B)
FLEN3 = LEN(C)
FLEN4 = LEN(D)
FLEN5 = LEN(E)

WRITE (*,*) ‘>‘, A, ‘< ’ , FLENl
WRITE (a,*) ‘>‘, B, ‘< ’ , FLEN2
WRITE (*,*) ‘>‘, C, ‘< ’ , FLEN3
WRITE (*,*) ‘>‘, D, ‘< ’ ,FLEN4
WRITE (*,*) ‘>‘, E, ‘< ’ ,FLENS
WRITE (*,*) ‘********e end FFCN - begin CFCN *********’

RTNVAL = CFCN(C,D,E)
FFCN = 0

RETURN

END

Army Research Laboratory Supercomputer Facility - APG, MD 13-7

Interlanguage Communication Introductory User Guide - hlay 1993

patton> cat string3.c

include <stdio.h>
include <string.h>
include <fortran.h>

CFCN (fstring3,fstring4,fstring5)
-fed fstring3,fstring4,fstring5;

1
int clen3, clen4, clen5, cclen3, cclen4, cclen5;
char *cstring3, *cstring4, *cstring5;

cstring3 = -fcdtocp (fstring3);
clen3 = -fcdlen (fstring3);
cclen3 = strlen (fstring3);
cstring4 = -fcdtocp (fstring4);
cstring4[10] = ‘\O’;
clen4 = -fcdlen (fstring4);
cclen4 = strlen (fstring4);
cstring5 = -fcdtocp (fstring5);
cstring5[11] = ‘\O’;
clen5 = -fcdlen (fstring5);
cclen5 = strlen (fstring5);

printf (” >%s< %d\n”,cstring3,clen3,cclen3);
printf (” >%s< %d\n”,cstring4,clen4,cclen4);
printf (” >%s< %d\n”,cstring5,clen5,cclen5);

>

patton> cc -c *.c
string1.c:
string3.c:
patton> cf77 -c *.f
string2.f:
patton> segldr *.o
patton> ./a.out

>stringl< 7
>string.2< 8
********* end main - begin FFCN **+*a****
>stringl< 7
>string.2< 8
>string..3 < 20
>string...4 < 20
>string....5 < 20
********* end FFCN - begin CFCN ****a****
>string..3 < 20 20
>string...4< 20 10
>string....5< 20 11

patton>

Figure 13.2. C and Fortran Communication - Character Values

13-8 Army Research Laboratory Supercomputer Facility - Al’G, MD

Introductory User Guide - May 1993 Int,erlanguage Communication

Note the three lines of output from CFCN. In each case, fcdlen returns the string length as it is known
to the Fortran CHARACTER descriptor. The length of t,he C string, not including the terminating zero

byte, is returned by strlen. Note also that printf output 20 characters for cstring3, but 10 and 11,

respectively, for cstring4 and cstringti. This is because FFCN padded strings C, D, and E out to 20
characters with blanks. The 21s character in each string is a zero byte, and the first zero byte terminates
the action of printf. (Recall that each of the Fortran strings is simply a local variable and so begins on a
word boundary. Each occupies three words with the rightmost 32 bits of the third word left unused. By
default, those 32 bits are zero filled.) printf output fewer characters for cstring4 and cstring5 because
zero bytes were explicitly placed at their llth and 12th (subscript values 10 and 11) character positions,
respectively. cstringl and cstring2, in main, are zero byte terminated in the eighth and ninth character
positions by virtue of the “, as opposed to ‘, in the char statement.

13.1.4 Arrays

In Fortran, the array subscript lower and upper bounds may be declared explicitly, or only the upper
bound be declared explicitly and the lower bound default to 1, in which case the upper bound has the same
value as the array size along that dimension. Fortran stores arrays in such a way that, as one progresses
sequentially from lower address elements to higher address elements, it is the leftmost subscript which is
incremented most rapidly. This is often, and erroneously, identified as “column major” order.

In C, array lower bounds are always zero. C stores arrays in such a way that, as one progresses sequen-
tially from lower address elements to higher address elements, it is the rightmost subscript which is incre-
mented most rapidly. This is often, and erroneously, identified as “row major” order.

When arrays are shared between C and Fortran, by passing them as arguments or through common
blocks,

l The subscript bounds may vary from program to program, but the size of the array must remain
the same.

l One-dimensional arrays require no special care with respect to the sequence of their elements
because there is only one subscript. They can be shared directly, and only the possible differences in
the subscript lower bound values need be accounted for.

l Multidimensional arrays, in addition to having the possible differences in the subscript lower bound
values accounted for, must have the order of their dimensions reversed in the definitions and the
order of their subscripts reversed in the executable statements in one or the other of C and Fortran,
and the size of the array along each (transposed) dimension must be the same in both languages, if
corresponding elements are to be conveniently addressable in the two languages. Multidimensional
arrays defined in C and passed to Cray math and science library programs, in addition to having
the possible differences in the subscript lower bound values accounted for, must have the order of
their dimensions reversed in the definitions and the order of their subscripts reversed in the execut-
able statements in the C in order to conform to Fortran’s storage convention, which is used by the
Cray math and science library programs.

For example, a Fortran array defined as

INTEGER A (20,O:lO)

could be defined in C code as:

int b[ll][20];

Then, the same value could be accessed from Fortran as, e.g., A(2,7) and from C as b[7][1].

l Arrays of characters and especially of strings can present formidable difficulty and should not be
passed between C and Fortran (except, of course, that a Fortran string converts to a C one-
dimensional character array, and vice versa). Arrays of the other types already discussed can be
passed between C and Fortran as long as each array element occupies the same amount of storage

Army Research Laboratory Supercomputer Facility - APG, MD 13-9

Interlanguage Communication Introductory User Guide - hlay I993

in each language. In particular, this requires that DOUBLE PRECISION not be disabled in the
Fortran compilation.

13.1.5 Fortran COMMON and C External Variables

C external variables defined in a structure are accessible from Fortran in named COMMON blocks, and
vice versa. For example,

struct

{
int i ;
long double d;
float “[lo];

> ST;
main()

{ . . .

and

SUBROUTINE FCTN
COIvMON /ST/ STI, STD, STA(O:9)
INTEGER ST1
DOUBLE PRECISION STD
REAL STA

both refer to the same defined entities in the expected way. Note that the correspondence is positional
within the structure/block, and that, because of the long double/DOUBLE PRECISION variable, the
Fortran compilation must not disable DOUBLE PRECISION.

13-10 Army Research Laboratory Supercomputer Facility - APG, MD

Introductory User Guide - May 1993 Debugging Tools

14. Debugging Tools

14.1 dbx

Available on the ARLSCF computers except for the Grays. Execute man dbx on the desired computer for

detailed information.

14.2 cdbx

The cdbx package is a tool for source level, interactive, symbolic debugging of programs running under
UNICOS. It is based on dbx, provided with the Fourth Berkeley Software Distribution; dbx itself, how-
ever, is no longer supported by UNICOS. On the Crays, the command, dbx, has become a synonym for
cdbx. cdbx can be used with C, CAL, CFT77, and Pascal programs. Those parts of a program to which
one intends to apply cdbx must be compiled using special compiler options, which cause the generation of
internal tables permitting the tracing of program execution via those symbolic names originally used by
the programmer. Clearly, it is of great benefit when those names are mnemonic and when individual
names are not used to represent a number of logically different entities.

cdbx may be used in a line-oriented mode or in the X Window System interface mode. The user may
choose his interface via an environment variable or explicitly on the command line. In addition, a user
may create an initialization file governing the initial actions of cdbx. cdbx searches for this file upon
invocation first as .cdbxinit and then as .dbxinit, first in the current directory and then in the home
directory. In addition, X Window System users may customize that environment with cdbx specific
entries in their .Xdefaults file.

Detailed information may be found in the on-line manual pages and in the Cray publications, UNICOS
CDBX Debugger User’s Guide, SG-2094 6.0, and UNICOS CDBX Symbolic Debugger Reference Manual,
SR-2091 6.1.

14.2.1 Syntax and Options

cdbx [-c corefile] [-e efile] [-f f name] [-h restartfile] [-I dir] [-1 /fire] [-L] (-p pid] [-r]

[-s symfile] [-VI [X-Toolkit-options] [commandfine]

-c corefile Names the corefile (default core, created upon abnormal termination of the user pro-
gram) to be examined. Related command: examine.

-e efile Causes cdbx to echo all its inputs to file ejile. Related command: echo.

-f fflame Names file jname to be examined or modified in a nonsymbolic manner. This can be
any file; it need not represent a program or a program image. Related command:
fedit.

-h restartfile Names file restart which, upon invocation of cdbx, is restored to a running process
under cdbx control. In general, the restrictions which apply to UN’ICOS restart files
(execute man chkpnt) apply to restartfile. Related commands: save and restore.

Army Research Laboratory Supercomputer Facility - APG, MD 14-l

Debugging Tools Introductory User Guide - hlay 1993

-1 dir Adds dir to the list of directories to be searched by cdbx when a file is required. By
default cdbx searches the current directory and any directory specified in a file’s path
name on the cdbx command line. Related command: use.

-1 lfile

-L

-p pid

Causes cdbx to echo all its inputs and outputs to file /fife. Related command: log.

Requests the line-oriented interface to cdbx. See the X Toolkit option display.

Specifies the process id of a current process to be placed under cdbx control. Related
commands: attach and detach.

--r Begins execution of specified program or restart file under cdbx control. In the
absence of errors, cdbx exits; otherwise, cdbx reports the error and issues the cdbx
prompt.

-8 symfile

-v

Names file symfile which contains the symbolic information produced by the language
processors and loader. The default is the file named on the command line or a.out.

Causes cdbx to print its version, build, and copyright information.

X Toolkit options: X Window System arguments entered on the cdbx command line override
values set in .Xdefaults.

-bg color Selects the window background color.

-bd color Selects the window border color.

-bw number Selects the window border width in pixels.

-display display Specifies the name of the desired X server.

-fg color Selects the text and graphics color.

-fn font Selects the display text font.

-geometry geometry Selects the window’s initial size and location.

-iconic Specifies that the application starts in an iconic state, subject to
the window manager’s interpretation of such a state.

-name name Selects the name under which resources for the application are to
be found. Useful when using shell aliases to distinguish between
invocations of an application; eliminates the need to create links to
obtain a different name for the executable.

-rv Simulates reverse video if possible, sometimes by swapping fore-
ground and background colors. Usually for monochromatic
displays, and may not be implemented correctly on all systems.

+rv Prevents simulation of reverse video. Useful for overriding related
defaults if reverse video does not work correctly.

-title string Selects the window title.

-xrm resourcestring Selects a resource name and value to override defaults. Can be
used to set resources which have no explicit commandline
options/arguments.

commandfine The entire command line which normally invokes the program, including options,
arguments, and redirection. There must be white space before each redirection. Must
be enclosed in double quotes (I’) to protect it from the shell, unless it consists of only
the executable’s name. Related commands: run and rerun.

When invoked with neither options nor arguments, cdbx searches the current directory for file a.out,
using it for the necessary symbolic information to begin debugging. cdbx also searches the current direc-
tory for file core, using it as the initial image for debugging. If file core is not found, a.out provides the
initial debug image.

14-2 Army Research Laboratory Supercomputer Facility - APG, MD

Introductory User Guide - May 1993 Debugging Tools

Generally, only one image is specified. If multiple images are specified with command line options, cdbx
selects the first one encountered in the order: image specified by -p, -h, -c, or by -f (in that order), the
executable named in commandline with -r, a.out from the current directory with -r, core from the
current directory, the executable named in commandline, or a.out from the current directory.

14.2.2 Commands

After cdbx has been initialized, its actions are controlled by a series of commands, of which the more basic
ones are summarized below. The commands summarized here provide, among other things, the abilities to

l query the program for the entities of which it is cognizant

. query the program for values and characteristics of entities

. run the program in its entirety, in part, or one source line at a time

. run the program until some specific condition obtains, including any change in the value of a vari-
able

a automatically query the program for values of variables whenever some condition obtains, including
any change in the value of a variable

l execute shell commands from within cdbx

Note that, in large part, cdbx respects the locality of variables and other symbols. Hence, for example,
dump in a subprogram will not yield the same information as in its invoker.

Most of the commands perform the desired task when they are typed, but stop, trace, and when gen-
erate other instructions which are executed later, when the program of interest executes under cdbx con-
trol. Furthermore, depending upon their usage, these commands may cause repetitive testing during exe-
cution, and this can dramatically slow the execution of a program, particularly if it is large or if the
machine load is heavy. A more detailed treatment of the entire command suite is available using cdbx’s
help command. Detailed information is available in the references previously cited.

/[regular_ezpression] Search forward in the current source file for regular_ezpression. Defaults to
most recent regular-ezpression.

?[regular-ezpression] Search backward in the current source file for regular-ezpression. Defaults to
most recent regular-ezpression.

assign variable = ezpression Set variable to the value of ezpression.

cant

delete [args]

do

down [n] / up

dump [name]

Resume execution from the current location.

Remove active stop, trace, and when commands. args is a comma-separated list of
designators of such commands. status displays all such commands in effect.

do i = ml, m2 [,m$] {commands}
do while condition {commands}

Execute commands n=max(int((m2-ml+m3)/m3),0) t imes (expressed in Fortran nota-
tion), or while condition is true. i must not be a program variable. The m’s must be
integers. mS defaults to 1. condition must return a Boolean result. commands is a
semicolon separated list.

[n] Move down/up the calling tree (away from/toward the main program) by n calls,
default 1.

Display the names and values of all variables in the named program unit, common
block, or module. name defaults to all active program units.

echo [fife] / unecho / log [fife] / unlog Begin/end echoing or logging the cdbx session to file, vari-
ous defaults. The difference is that echoing copies cdbx commands, while logging
copies cdbx commands and output.

Army Research Laboratory Supercomputer Facility - APG, MD 14-3

Debugging Tools Introductory User Guide - hlay 1993

edit [name] Invoke an editor (selected by the environment) for the current source file (default), or
file name, or the file containing program unit name. Saving the edited file is to disk,
not to cdbx’s current file.

explain [[dbgln] P rovide additional information about cdbx diagnostic message dbgnum. Defaults

file file

func [name]

gripe

help [list]

to the most recent diagnostic.

Change to source file file, Affects the line numbers and labels used by stop and trace.
With no argument, displays the name of the current source file.

Change the current program unit, but not the execution pointer, to the most recent
execution of program unit name. Thus, after a func name, dump shows values
known to name, and step acts as if no func had been issued. Without an argument,
displays the name of the current program unit.

Send a message to the system person responsible for cdbx. Text is neither echoed nor
logged.

Invoke help for a comma-separated list of cdbx commands and other topics. Without
fist, a list of all topics is displayed.

if condition then {commands} [else {other-commands}] Execute commands if condition is true, other-
wise execute other-commands. condition must return a Boolean result. commands is a
semicolon separated list.

list [namelnl[,n2]] List the next 10 lines of the current source file (default), or 10 lines centered about
the first executable line of program unit name, or line number nl, or line numbers nl
through n2. nf and n2 may be integers, . (current line), or .fn. 0 is a synonym for
the line number of the last line.

log [fire] / unlog / echo [file] / unecho Begin/end logging or echoing the cdbx session to file, vari-
ous defaults. The difference is that logging copies cdbx commands and output, while
echoing copies cdbx commands.

menu / unmenu Add/delete an item to/from the X Window command menu. See the references.

next [n] / step [n] E xecute the next n source lines, default 1. The difference is that, when the next
source line is a subprogram (and that subprogram was compiled with debug symbol
table information), step “steps” through the subprogram, whereas next executes the
subprogram in its entirety and resumes stepping only after the source language return.
Both commands temporarily disable stops.

print expressions Display the values of the comma-separated ezpressions.

printf [(]“format”[,ezpressions] [)] S ame as print expressions, but in C style, with C style formatting,

psym symbol

quit

[re]run [args]

return [name]

fm3

sh [string]

14-4

except that %c is not available.

Display information about symbol.

End the cdbx session.

Execute the program from the beginning, creating a new program image. Without
arguments, run uses the preceding execution’s argument set, including redirection,
whereas rerun clears that set. With arguments, run and rerun function identically,
replacing the preceding argument set in its entirety with args. args is any set of the
kinds of items in cdbx’s commandline argument, not including the executable name.

Provide a quick escape from a subprogram through which one is stepping. Effectively
a cont., but only through the next source language return, or through the source
language return to program unit name.

List the segments of a segmented program and note which are resident in memory.

Invoke a shell to execute UNICOS commands. string is the command string. string
defaults to interactive input. Output is not logged.

Army Research Laboratory Supercomputer Facility - AF’G, MD

Introductory User Guide - May 1993 Debugging Tools

show type Display a list of symbols of the type specified in the current program unit, as provided
by the symbol table. type is commons, labels, lines, scopes, or vars.

source fife Cause cdbx to read commands from file.

status Display the currently active stop, trace, and when commands.

step [n] / next [n] Execute the next n source lines, default 1. The difference is that, when the next

source line is a subprogram (and that subprogram was compiled with debug symbol
table information), step steps through the subprogram, whereas next executes the
subprogram in its entirety and resumes stepping only after the source language return.
Both commands temporarily disable stops.

stop stop
stop if condition
stop at line [if condition]
stop in programunit [if condition]
stop var [if condition]

Set a breakpoint at which execution will be stopped unconditionally, or whenever con-

dition is true, or at the source line number or label, or upon entry to the program unit,
or whenever the variable’s value changes. condition must return a Boolean result.

switch symfile Equivalent to exiting cdbx and then executing cdbx symfle, where aymfile is an exe-
cutable, but without leaving cdbx.

trace trace
trace if condition
trace in process [if condition]
trace at line [if condition]

trace mar [if condition] [in process]
trace ezpr at fine [if condition]
trace procedure [if condition] [in process]

Display tracing information throughout execution, or whenever condition is true, or
whenever the process is active, or display the source at the line number or label when-
ever that line is executed, or display the value of the variable whenever it changes, or
display the value of the expression whenever execution reaches the line number or
label, or display calling information whenever procedure is invoked and return infor-
mation upon executing the source language return. condition must return a Boolean
result.

unecho / echo [file] / unlog / log [file] End/b g e in echoing or logging the cdbx session to file file,
various defaults. The difference is that echoing copies cdbx commands, while logging
copies cdbx commands and output.

unlog / log [file] / unecho / echo [file] End/begin logging or echoing the cdbx session to file file,
various defaults. The difference is that logging copies cdbx commands and output,
while echoing copies cdbx commands.

unmenu / menu Delete/add an item from/to the X Window command menu. See the references.

up [n] / down [n] Move up/down the calling tree (toward/away from the main program) by n calls,
default 1.

whatis symbol Display the declaration of symbol.

when when condition {commands}
when in procedure {commands}
when at he {commands}

During execution, execute command8 whenever condition is true, or whenever pro-
cedure is invoked, or whenever execution reaches the line number or label. condition
must return a Boolean result. commands is a semicolon-separated list.

Army Research Laboratory Supercomputer Facility - AF’G, MD 14-5

Debugging Tools Introductory User Guide - May 1963

where [tz] Display the calling tree (traceback) for the most recent n calls, default 100.

whereis name Display the full qualification of all symbols with name.

14.3 debug

debug is a batch-oriented tool for symbolic debugging under UNICOS. It produces a snapshot dump of a
running program. The -D option is required at compilation time to produce the necessary symbol table.
By default, debug assumes names core for the corefile and a.out for the executable and sends its analysis
to standard out, Detailed information is available by executing man debug and in the Cray publication,
UNICOS User Commands Reference Manual, SR-2011 6.0.

14.4 symdump

symdump is a Cray library routine which produces the same sort of output as does debug, that is, a
snapshot dump of a running program. It is invoked from within a program with language dependent syn-
tax. For example, it is invoked from within a Fortran program by:

CALL SYMDUMP [(‘options/arguments’ [,abortflag])]

By default, SYMDUMP examines the options and reports errors, but does not cause the program to
abort. segldr option -1 1ibdb.a or an equivalent is required.

Detailed information is available in the Cray publication, Volume 1: UNICOS Fortran Library Reference
Manuaf, SR-2079 6.0, and by executing man symdump.

14.5 adb

The adb command invokes the UNIX absolute debugger, which permits a user to examine core files from
crashed systems or aborted programs. adb is interactive, allows access to global variables, and provides
output in several formats. Detailed information for the Cray computers is available in the Cray publica-
tion, UNICOS User Commands Reference Manual, SR-2011 6.0, and for all ARLSCF computers by exe-
cuting man adb.

14.6 lint

lint attempts to detect features of portable C source code which are likely to be bugs, nonportable, or
inefficient. lint performs type checking more strictly than the compiler, detects unreachable statements,
logical expressions whose value is constant, loops not entered at the top, and variables declared but not
used. Detailed information for the Cray computers is available in the Cray publication, UNICOS User
Commands Reference Manual, SR-2011 6.0, and for all ARLSCF computers by executing man lint.

14.7 flint

flint (Fortran-lint) is third-party software which performs a global analysis of Fortran source code and
reports a wide range of actual and potential problems and instances of poor programming practice. It is,
more or less, the Fortran equivalent of lint. There are many options to govern its specific behavior. flint
with neither options nor file names produces a help screen. flint -demo runs a small demonstration case.

14-6 Army Research Laboratory Supercomputer Facility - APG, MD

Introductory User Guide - May 1993 Debugging Tools

man flint yields the man page. A hard copy manual which provides the same information as the man
page, but in greater detail, is available.

Army Research Laboratory Supercomputer Facility - APG, MD 14-i

Debugging Tools

14-8

Introductory User Guide - May 1993

Intentionally Left Blank

Army Research Laboratory Supercomputer Facility - APG, MD

Introductory User Guide - May 1993 Optimizing Cray Programs - Preprocessors

15. Optimizing Cray Programs -
Preprocessors

This chapter applies specifically to the ARLSCF Cray computers. Run time efficiency is a prime objective

of the Cray compiling systems. Even with default options, Cray compilers produce optimized object code.
There are various additional options which can produce even greater optimization, including generating
object code which makes efficient use of multiple processors. An important consideration in optimization

is that the programmer avoid writing source code containing certain features which inhibit optimization.

15.1 Analyzing a Program and Its
Performance

This section introduces UNICOS tools which assist a programmer in determining and improving the
efficiency of a program. With the exception of ftref, which is designed for Fortran programs, these tools
are usable with the various languages supported by UNICOS. AI1 the examples are expressed in terms of
Fortran and the Bourne shell. Detailed information may be found in the on-line manual pages and in the
Cray publication, UNICOS Performance Utilities Reference Manual, SR-2040 6.0.

15.1.1 Analyzing Fortran Source Code - ftref

ftref statically analyzes source code to show program structure, common block usage, and information
specific to multitasking.

ftref has a number of directives and command line options. The following is a simple example of ftref’s
use to obtain common block references (-c full) and a full call tree (-t full). Note the -c option on the
cf77 command; the loader is not invoked, because ftref performs only a static analysis, using as its input
the compiler’s listing output.

cf77 -c -Wf”-esx” program-f

ftref -c full -t full program.1 > program.re~

Large call trees can be trimmed with options:

-1 n Add to restrict -t full to the first n levels.

-r subprogram Add to restrict -t full to the subtree rooted at subprogram.

-t part Substitute to output certain calling information, but not the call tree itself.

15.1.2 Tracing and Timing Programs - Flowtrace

The Flowtrace feature prints calling and timing information about all or selected program units, as moni-
tored during execution. Flowtrace adds considerable overhead, which may distort the results for quickly
executing program units.

Army Research Laboratory Supercomputer Facility - APG, MD 15-l

Optimizing Cray Programs - Preprocessors Introductory User Guide - hlay 1993

To use Flowtrace,

. include -F on the cf77 command line to flowtrace the entire program, excluding desired program
units with CDIR$ NOFLOW directives in those subprograms, or

l do not include -F on the cf77 command line, and place CDIR.$ FLOW directives in the program
units to be flowtraced.

Whenever flowtracing is done, the main program must be flowtraced if the percentages of execution time
spent in various program units are to be reliable. This is not necessary to obtain reliable CPU cumulative
times with the SETPLlMQ subroutine (see the following section, SETPLIMQ). Whenever
FLOW/NOFLOW directives are used, their effect is limited to the program units in which they appear,
and the last one within a program unit is effective for the entire program unit. The execution time of sub-
programs which are not flowtraced will be included in the execution time of their nearest flowtraced
invoker. In flowtraced programs, CALL EXIT and CALL ABORT must be replaced with STOP.

Flowtrace outputs its results to file flow.data, which is read by flowview. flowview has a number of
options and environment variables, and has an X Window System interface. The command flowview by
itself is sufficient for viewing flow.data within the X Window System, while

is typical without it.
line options are used.
quently used options.

flowview -Luch > flow-report

-L suppresses the X Window System interface, and is required whenever command
u, c, and h affect the content and style of the report, and are probably the most fre-

15.1.2.1 The FL0 WMARK Subroutine

The FLOWMAR K subroutine permits Flowtrace to treat sections of code within a program unit as if
they themselves were subprograms. CALL FLOWMAR.K(‘name’L) initiates such a section and CALL
FLOWMARK terminates it. name serves as the pseudo-subprogram name, must be no longer than
seven printable characters, and must contain no white space.

15.1.2.2 The SETPLIMQ Subroutine

Executing a CALL SETPLIMQ() n causes every subsequently executed subprogram invocation and
RETURN, within program units being flowtraced, to output to standard error a line containing invoca-
tion information and cumulative CPU time, up to a total of n lines. Within flowtraced portions of a pro-
gram, the (potentially voluminous) SETPLIMQ output may be controlled by careful prediction of the
desired n, or by bracketing important portions of the flowtraced code with CALL SETPLlMQ(n) and
CALL SETPLlMQ(0). In this usage, the CALL SETPLIMQ(0) t urns off the output, and n need be
only “large enough.”

Experience suggests that

l The program unit in which the CALL SETPLIMQ() n resides need not itself be being flowtraced,
unless that program unit is the main program.

l The CALL SETPLIMQ() n ma occur as many invoking levels as desired above the flowtraced y
program unit(s), separated from them by as many intervening NOFLOW program unit(s) as
desired.

l The CALL SETPLIMQ() y n ma occur as many invoking levels deep as desired in the invoking
sequence, with some higher levels being flowtraced. Subsequent to execution of the CALL
SETPLIMQ(n), f in ormation will be output for all flowtraced program units in the invoking
sequence, even the ones at a higher level than the CALL SETPLLMQ(n).

l It is the invoked program unit, rather than its invoker, which must be being flowtraced in order to
obtain information about the invoked program unit. Of course, the invoker also may be being
flowtraced, and indeed must be if information concerning its invocation is to be obtained.

15-2 Army Research Laboratory Supercomputer Facility - .4PG, MD

Introductory User Guide - May 1993 Optimizing Gray Programs - Preprocessors

0 If the immediate invoker is not being flowtraced, then the invoked program unit is said to have
been invoked by its nearest invoker, with a corresponding stack depth. The invoker of the main
program is *SYSTEM.

15.1.3 Timing A Program

“Profiling” provides a measure of the time spent in different parts of a program. The time command pro-
vides total execution time for a program. Neither of these methods adds any significant overhead, nor do
they provide any call tree information.

15.1.3.1 Profiling

When the profiling library, libprof.a, is loaded with an executable, the portion of memory in which the
executable resides is divided up into pieces of desired size, called “buckets.” Bucket size is defined by the
user’s environmental variable, PROF-WPB, and may be as small as one machine word (default: four
machine words). At regular intervals during execution, the operating system samples the program’s
address register and increments by 1 the “hit count” for the bucket encompassing that address. On the
Cray X-MP only, the sampling rate may be changed by use of the environmental variable
PROF-RATE. By default, PROFJLATE is set for the fastest rate. Upon normal termination, all the
bucket counts are written to file prof.data. Executing prof -x merges the profiling statistics with sym-
bol information from the original executable, for which the necessary compilation option must have been
used. Finally, executing profview, which has an X Window System interface, provides a user-oriented
display of the profiling statistics. Both prof and profview have a number of options and several environ-
mental variables which influence their behavior. prof may even provide the final profiling output, if
desired, but using profview, even without the X Window System, is the recommended technique. A sim-
ple example of profiling within an X Window System environment is:

The command

cf77 -G -1 prof program.f
env PROF_WPB=l ./a.out
prof -x a.out > programprof
profview program.prof

profview -LmhDc program.prof > Prof. report

is typical of use without the X Window System. -L suppresses the X Window System interface, and is
required whenever command line options are used.

15.1.3.2 time

time acts like a shell to run a program while measuring time expended. No special compile or load
options are required in creating the executable. The command

time “commandline”

reports to standard error the total wall clock time from start to finish of commandline, the time spent in
actual execution of commandline, and the time used by the operating system in the execution of command-

line.

15.1.4 Monitoring Hardware Performance

The Hardware Performance Monitor hardware (available only on the Cray X-MP) monitors a number of
hardware activities. Statistics concerning these activities can be accumulated by hpm for an entire

Army Research Laboratory Supercomputer Facility - APG, MD 15-3

Optimizing Cray Programs - Preprocessors Introductory User Guide - May 1993

program and by perftrace for program units. These statistics provide an indication of how efficiently an
executable utilizes the Cray X-MP’s hardware capabilities.

15.1.4.1 Hardware Performance by Program - hpm

hpm acts like a shell to run a program while accruing statistics from the Hardware Performance Monitor
hardware. No special compile or load options are required in creating the executable. Four separate runs
are required to obtain all possible information, one to accrue data from each of four hardware monitor
groups, 0 through 3. For example, interfacing with the X Window System:

hpm --c -gO “commandline” 2> perf.data
hpm -r -gl “commandline” 2> > perf.data
hpm -r -g2 “commandline” 2> > perf.data
hpm -r -g3 “commandline” 2> > perf.data
perfview

The command

perfview -LBuchM program.prof > hpm.report

is typical of use without the X Window System. -L suppresses the X Window System interface, and is
required whenever command line options are used.

15.1.4.2 Machine Performance by Program Unit - Perftrace

Perftrace provides the same kinds of information given by hpm, but broken down by program unit, at the
cost of significant overhead. Perftrace is not usable with multitasked programs. It is used similarly to
Flowtrace (preceding); that is, the executable must be compiled with the -F option, loaded with the
Perftrace library, libperf.a, and the FL0 WMARK subroutine can be used to address parts of the exe-
cutable rather than its entirety. Unlike hpm, a single execution is sufficient to accrue data from all four
hardware monitor groups, and the data from several executions may be concatenated into one data file to
enhance the accuracy of perfview’s results. Note that the Perftrace library and hpm are incompatible.

The following example assumes an X Window System interface:

The command

cf77 -F -1 perf program.f

./a.out > program.perf

perfview

perfview -LBuchM program.perf > perftrace.report

is typical of use without the X Window System. -L suppresses the X Window System interface, and is
required whenever command line options are used.

15.2 Vectorization - fpp

There are any number of programming techniques which are known to improve program performance in
general. A particular technique which applies only to certain machines and compilers is known as “vector-
ization,” and the machines and compilers to which it applies, as vector machines and vectorizing com-
pilers. The Gray machines and compilers at the ARLSCF are vector machines and vectorizing compilers.

Vector processing is a form of parallel processing in which elements of an array are processed in groups,
rather than individually. There are no overhead costs associated with interprocess communication because
only one CPU is used. Vector processing may be combined with multitasking, wherein multiple CPUs are
used.

15-4 Army Research Laboratory Supercomputer Facility - APG, MD

Introductory User Guide - May 1993 Optimizing Cray Programs - Preprocessors

Vectorization is the process of changing scalar (nonvector) operations to vector operations, and, for many
applications, it is the most important optimization feature of a Cray compiling system. For example, on
Cray machines, a vector loop typically executes an order of magnitude faster than an equivalent scalar
loop. It is important that programmers write source code in such a manner as not to impede the compil-
ing system’s ability to recognize vectorizable logic.

The remainder of this section applies specifically to Cray vector processing. It assumes hardware charac-
teristics specific to Cray computers, is expressed entirely in terms of Fortran, and is the briefest of intro-
ductions to a topic of considerable breadth.

Of itself, vectorization performed automatically by cf77 -Zv or manually by the user does not cause
ANSI Standard Fortran 77 source code to become nonstandard, except that certain code sequences may be
entirely replaced by calls to highly optimized library subroutines, and except that certain IF loops may be
replaced by DO WHILE loops. The -Zv option invokes fpp, the Fortran dependence analyzer, prior to
invoking cft77. Its product is an intermediate file of Fortran source code, restructured to some degree,
with certain code sequences replaced by highly optimized library routines, and incorporating compiling
system directives (all beginning with a C in column 1 so that they appear to other compilers to be com-
ments) which implement vectorization and autotasking. fpp always prefers vectorizing to autotasking.
The autotasking directives are ignored by cft77. For autotasking (and microtasking) directives to be
effective, the Fortran multitasking translator, fmp, must be invoked before cft77. cf77’s -Zp option
invokes fpp and then fmp before cft77 to produce autotasked code. All forms of multitasking are dis-
cussed in a later section of this chapter.

Detailed information may be found in the on-line manual pages, in the Cray publications, CF77 Compiling
System,

Volume 1: Fortran Reference Manual, SR-3071 5.0
Volume 2: Compiler Message Manual, SR-3072 5.0
Volume 5: Vectorization Guide, SG-3073 5.0

Volume 4: Parallel Processing Guide, SG-3074 5.0

and in the reference manuals pertinent to other languages.

Considerable detailed discussion of specific techniques applicable to specific programming situations, and
many more examples than are presented herein, may be found in the Vectorization Guide. Before embark-
ing upon the effort of detailed interaction with the vectorization process, the programmer should consider
whether the potential return is worth the cost.

15.2.1 General Requirements for Vectorization

cf77 -Zv invokes the fpp preprocessor and the cft77 compiler to vectorize automatically a Fortran pro
gram.

To be vectorizable, a source code construct must be an array operation or an innermost loop. Array
operations are Cray extensions to ANSI Standard Fortran 77 which treat entire arrays with the same syn-
tax as if they were single variables. Such operations are inherently vectorizable. Oftentimes, an innermost
loop and a few next-inner loops can be restructured by the programmer, or are restructured automatically
by cf77 -Zv, so that all the resulting loops are innermost.

Vector and scalar versions of the loop must yield equivalent results. cf77 -Zv performs
in this respect. When -Zv errs, it does so by rejecting vectorization candidates which, despite

their appearance, really are vectorizable because of the specific nature of the program at hand, because of
the nature of the data to be processed, or for other reasons which are beyond its analytical capability.
Often, the programmer may be able to restructure the code so that it will vectorize, or he may be able to
use compiler directives to force the compiling system to vectorize the program.

The loop must not be “too complex.” There is a tradeoff here. Smaller loops are more likely to be vector-
ized, but larger loops have less overhead than several equivalent smaller loops, and so yield better perfor-
mance if they do vectorize.

Army Research Laboratory Supercomputer Facility - APG, MD 15-5

Optimizing Cray Programs - Preprocessors Introductory User Guide - May 1993

15.2.1.1 Unvectorizable Code

Innermost loops containing any of the following cannot be vectorized:

I/O statements, even though an implied DO list vectorizes.

EXTERNALS which are not VFUNCTIONs and which are not expanded inline. VFUNC-
TION is a compiler directive specifying that a vector form of an EXTERNAL, written in Cray
Assembly Language, is available.

Certain INTRINSIC functions.

RETURN, STOP, or PAUSE statements. These should be replaced by branches
to the statement.

Arithmetic IFS, computed GOTOs, and assigned GOTOs.

Backward branches entirely within the loop (other than the one forming the loop).

A branch into the loop from its exterior (nonstandard in a DO loop).

Any reference to any CHARACTER entity.

Vector dependencies, with some exceptions.

out of the loop,

15.2.1.2 Vector Dependencies

A vector dependency is an expression or group of expressions in a loop such that the results of later itera-
tions depend upon results of earlier iterations. Certain vector dependencies can be vectorized. For exam-

ple, R = R + A(1) with in a loop is a “reduction” and can be partially vectorized. Partial sums of A are

computed with vector code, then added together with scalar code.

Some vector dependencies have a threshold, that is, a number of iterations before dependency occurs.
Consider a loop containing A(1) = A(I-6), and starting at 7 with an increment of 1. Such a construct has
a threshold of 6. If the threshold is ignored, only the assignments into A(7) through A(12) are certain to
be correct because the assignments into A(13) on out use the results of logically earlier assignments which
may not yet be physically completed. For vectorization to be safe in such a situation, the vector length
(the number of logical operations being physically accomplished at nearly the same time) must not be
greater than the threshold. In the present example, performing the assignments in groups of 6 ensures that
each succeeding group finds earlier results ready to be used. cf77 -Zv selects proper vector lengths (64
maximum) for thresholds greater than 2 and vectorizes. If the threshold cannot be determined at compile
time, cf77 -Zv vectorizes with additional code to determine the safe vector length at execution time.

If necessary, cf77 -Zv will produce both a scalar and a vector version of a loop with an execution time
selection test. For example, the following code produces a scalar loop and a vector loop, with the selection
test, if II.LE.0 .OR. II.GE.N

SUBROUTINE Q(A,B,II,N)
REAL A(*), B(*)

DO IO I=I:N’

.

A(II+I) = A(1) + B(I)
10 CONTINUE

. . .

15-6 Army Research Laboratory Supercomputer Facility - APG, MD

Introductory User Guide - ?vlay 1993 Optimizing Gray Programs - Preprocessors

15.2.1.3 Loops Containing IFS

Of themselves, the following do not prevent vectorization of loops:

l block IFS

. vectorizable IFS controlling a GOT0 which transfers out of the loop

l logical IFS whose conditional statement either is not a branch or branches forward within the loop

15.2.1.4 Vectorizable Expressions and Statements

In general, vectorizable expressions are arithmetic or logical expressions and statements which are in inner-
most loops and which consist of combinations of:

Loop invariants Constants or simple variables referenced but not redefined within the loop.
An array element with a loop invariant as a subscript is itself a loop invari-
ant.

Scalar temporaries Simple variables defined and later referenced within the loop, but not outside
the loop.

Loop counters Integer variables incremented or decremented by an integer constant expres-
sion on each pass through the loop. The only operators permitted in the
expression are + and -. If the result could alternate in sign, it inhibits vec-
torization. A loop counter may be incremented or decremented more than
once per pass if the effect on the loop is the same as some single assignment.

Vector array references References to array elements whose subscripts are not loop invariant.

Invocations, with vectorizable expressions as arguments, of FUNCTIONS with vector versions.

15.2.2 Some Other Considerations

15.2.2.1 Vectors

A vector is the basic operand for vectorized operations. It is an array, or a subset of an array, of not more
than 64 elements. If more than 64 elements are involved for one operand in the desired computation, they
are grouped into additional vectors, each with its own startup and ending overhead in the vectorized
operation. Sometimes a sequence of vectorized operations can be chained together to reduce the overhead.

15.2.2.2 The Stride

The stride is the interval between memory locations for successive vector elements. Vectorization requires
that the stride be constant for all the elements of a vector operand. Not only must the stride be constant,
but also it is important that its value not cause memory contention.

15.2.2.3 Memory Contention

Memory on a Cray is arranged in distinct banks. When a memory location in a bank is accessed, that
bank becomes unavailable for a certain number of clock periods, the “bank-busy” time. To avoid perfor-
mance degradation, it is important that successive accesses to the same memory bank not occur within the
bank-busy time. The Cray X-MP has 64 banks, and the Cray-2, 128. The target command yields the
number of banks and the bank-busy time on either machine.

Army Research Laboratory Supercomputer Facility - APG, MD 15-7

Optimizing Cray Programs - Preprocessors

DO 10 J=l,lOO

Consider the following code on the Cray X-MP:

REAL A(25&0;,

DO 20 I=1:25’6
.

B(256,lOO)

Introductory User Guide - May 1993

AU, J) = 2.*B(I,J)
10 CONTINUE
20 CONTINUE

. . .

Array elements are accessed in the order A(l,l), A(1,!2), A(l,3), B ecause 256 is a multiple of 64, all

these accesses (until A(2,l)) are to the same bank, with terrible performance degradation. Were the two
DO statements reversed, each access would be to a different bank, until A(65,1), at which point the bank
access sequence repeats. In the reversed example, there is sufficient time between accesses to the same
memory bank that there are no bank-busy delays.

A different solution is simply to increase the arrays’ column lengths to 257, without reversing the order of
the DO statements. The trip count is not changed, only the array dimensions. Memory accesses remain
along the rows, but with a stride of 257, each successive access is to the next memory bank (257 modulo 64
= 1). Odd strides guarantee that successive memory accesses are not to the same memory bank.

15.2.3 User Interaction with Vectorization

The fpp preprocessor, invoked by cf77’s -Zv option, produces an intermediate source code file. The
intermediate source code file conforms to the ANSI Fortran 77 standard as well as did the original code,
except that certain code sequences may be entirely replaced by calls to highly optimized library subrou-
tines, and except that certain IF loops may be replaced by DO WHILE loops. The differences between
the two files consist of restructured code sequences, substituted code, and inserted compiler directives.

The user may select appropriate cf77 -Zv options to view the results of and, in some cases, rationale for
fpp’s processing, to influence or override fpp’s processing, to retain fpp’s output file, and to influence or
override cft77’s vectorizing. In addition, both fpp and cft77 understand directives which can provide
very specific control over their processing. Partial listings of these options and directives are presented in
following sections of this chapter.

A useful technique for the user desiring specific information about the optimization performed, or needing
a point of departure for additional or different optimization, is to obtain the fpp and cft77 -em listing
outputs and the fpp intermediate source code output. These, of course, may be obtained directly from
cf77.

15.2.3.1 fpp Options

These options are provided to fpp in the normal manner, or to cf77 in a -Wd”...” construct.

-1 subpgml,subpgm2,... Lists subprograms which are to be expanded inline.

-1 file Enables the fpp listing and directs it to file.

-M lines Specifies the maximum number of source lines allowed for automatic inline expansion;
default 50.

-0 file Directs the intermediate source code file to file instead of to standard output. file is suit-
able for input to fmp or cft77.

15-8 Army Research Laboratory Supercomputer Facility - APG, h4D

Introductory User Guide - May 1993 Optimizing Cray Programs - Preprocessors

-d ofl$tring Disables or
-e onstring Enables the following optimization switches:

a

d

j

1

m

S

t

V

X

6

7

Permits associative transformations of code, for example, the vectorizing of a
reduction. May cause slightly different results due to the inherent nonassocia-
tivity of REAL arithmetic. Default: enabled.

Performs vector dependency checking. Default: enabled.

Translates certain nested loop constructs, such as element-by-element matrix
operations, into calls to highly optimized library routines. Default: enabled.

Translates IF loops into DO loops, including nonstandard DO WHILE loops.
Default: enabled.

Generates alternative code for potential dependencies. Default: enabled.

Permits loop splitting to isolate vector dependencies. Default: enabled.

Uses aggressive criteria for vectorizing nested loops. Default: disabled.

Enhances the subsequent cft77 vectorization. Default: enabled.

Creates the intermediate source code file. If disabled, only the listing file is pro-
duced, at some saving of time and disk space. Default: enabled.

Subprograms meeting certain criteria are expanded inline. The criteria are such
that the code produced is always safe. Default: disabled.

Subprograms meeting certain criteria are expanded inline. The criteria are such
that the code produced is rarely unsafe. Default: disabled.

15.2.3.2 fpp Directives

These directives appear in the fpp or cf77 input file and are interpreted by fpp. Their prefix of CFPP%
followed by at least one blank causes them to be comments for non-Cray compilers. Some are of form
ditective/opposite-directo’ve. In such cases, the default is listed first. Some accept a trailing blank and
then a scope parameter, which specifies the range of code to which the directive applies. Values of the
scope parameter are:

R Directive applies to end of current program unit.
L Directive applies to next DO or DO WHILE (nonstandard) loop encountered. The default.
F Directive applies to end of current file.
I Directive applies at the current point in the source code.

A subset of the directives is:

ALTCODE[n]/NOALTCODE Enables/disables generation of alternate code blocks. n is an
integer indicating a trip count or any other expression to be used
in tests for alternate code. Scope: L/R/F. Similar to -em.

ASSOC/NOASSOC Enables/disables associative transformations. Scope: L/R/F.
Similar to -ea.

NOAUTOEXPAND/AUTOEXF’AND D isa es enables automatic inlining. Scope: L/R/F. bl /

CHOP-HERE Breaks a loop into two loops at the current point.

DEPCHK/NODEPCHK Enables/disables vector dependency checks. NODEPCHK asserts
that no vector dependency exists. Scope: L/R/F. Similar to -ed.

RELATION (i&l rel ;ntZ) Provides additional information to fpp by asserting that a particu-
lar relationship exists between an integer variable (intl) and
another integer entity (intd). rel is a Fortran relational operator.
Scope: L/R/F.

Army Research Laboratory Supercomputer Facility - APG, MD 15-9

Optimizing Cray Programs - Preprocessors Introductory User Guide - May 1993

SELECT

SWITCH

NOUNROLL/UNROLL[n]

Selects the next loop in a nest as the one to optimize.

Permits various optimization and listing parameters to be set from
within the source file. Certain TIDY parameters (see the TIDY
section, following) can be set in no other way.

Disables/enables loop unrolling. With scope R or F, rr is max-
imum trip count for automatic unrolling (default 3). With scope
L, n is the number of times to unroll the loop, default calculated

by fpp.

15.2.3.3 cft77 Options

These options are provided to cft77 in the normal manner, or to cf77 in a -wf”...” construct.

-1 inlname Explicit inlining. Every program in file or directory inlname is inlined regardless of its
calling tree level, as long as it meets certain other requirements. Distinct from
automatic inlining (-0 inline[n], n=1,2,3), which is applied to all programs whose cal-
ling tree level is not greater than n and which meet certain other requirements.

-1 fistfiIe Creates file l&file to receive listing output enabled by -e options c, g, m, s, x and by
the LIST and CODE directives. Default: fife.1, from fi1e.f.

-0 optim (,optim]... Specifies code optimizations to be performed during compilation. A complete list
of optimization codes may be found in the chapter, “cf77 Compiling System.”

-d oflstring Disables or
-e onstring Enables various compilation options. A complete list may be found in the chapter,

“cf77 Compiling System.” A particularly useful option when vectorization is involved
is -em. This option specifically marks all loops in the listing output and indicates cer-
tain of their characteristics which pertain to their vectorization: whether they are vec-
tor, scalar, or unwound loops, and whether they are bottom loaded, unrolled, short, vec-
torized with a computed maximum safe vector length, vectorized with a short safe vector
length, and/or unconditionally vectorized with CDDRL IVDEP.

15.2.3.4 cft77 Directives

The following directives are a small subset of those which the programmer may place in the cft77 or cf77
input file and which are interpreted by cft77. Certain ones also influence the operation of fpp. Their
prefix of CDXR$ followed by at least one blank causes them to be comments for non-Cray compilers.
Much of fpp’s processing results in the insertion of these same cft77 directives; fpp’s insertions, however,
are prefixed CDlR@, so that they may be distinguished from user insertions.

IVDEP[SAFEVL=n] Causes the compiler to ignore vector dependencies when the vector
length is at least n, default all vector dependencies. Applies to the
first DO or DO WHILE (nonstandard) loop, or array syntax assign-
ment, following the directive and in the same program unit.

NEXTSCALAR Suppresses vectorization of following DO or DO WHILE (nonstan-
dard) loop.

RECURRENCE/NORECURRENCE Toggle on and off the command line enabled vectorization
of reduction loops; directives override -0 recurrence but not -0
norecurrence. A reduction loop reduces an array to a scalar value
by doing a cumulative operation on all of the array’s elements; this
involves including the result of the previous iteration in the expression
of the current iteration.

15-10 Army Research Laboratory Supercomputer Facility - APG, MD

(nonstandard) loop following and in the
same program unit as the directive. Effective only in vectorized loops.

VECTOR/NOVECTOR Toggles on and off, command line enabled vectorization.

V-FUNCTION list Indicates that the listed external functions have vector versions.

VSEARCH/NOVSEARCH Toggles on and off, command line enabled vectorization of search
loops. A search loop is a loop which
statement.

can be exited by means of an II?

15.2.4 Another Capability - TIDYing

Code “tidying” or “beautifying,” although entirely cosmetic, can make a remarkable improvement in the
legibility and, hence, maintainability, of intricate, lengthy, unstructured programs with statement labels
not in numerical order and with FORMAT and DATA statements scattered throughout.

Because of its extensive parsing and analysis capabilities, fpp is more than an adequate processor to beau-
tify source code. The command

fpp -dacdehjlmpsuvy015 -ql -r... -ny... files-f

disables (-d) almost all (see the discussion at the end of this section) functionality of fpp except TIDYing,
with output to standard out. The -r and --n options use their own set of switches to enable and disable,
respectively, various features of code beautification. There are 21 such switches which provide the user
with the ability to select exactly what is to be done. Among the more popular features, with very abbrevi-
ated descriptions and their default settings, are:

a places inline comments on preceding line if available inline space becomes insufficient (on)

C ensures space after comma in list (on)

e, P e ensures space around =, and p, around + and - (on)

f positions FORMAT statements just before the END (off)

j, t j ensures space around ** and //, and t, around * and / (off)

k, o, q k ensures space around .AND., .OR., .EQV., .NEQV. (off); o ensures space around all logi-
cal operators (off); q is a combination of k and o which treats IF statements differently (on);
only one of the three may be on

m modifies spacing rules to permit short, otherwise two-line, statements to fit on one line (on)

n ensures space around nonsubscript parentheses (off)

r generates a block of comments listing externals (off)

s applies j, p, t spacing rules to inside of parentheses (off)

X shorthand specification of a popular style: format relabeling initialized at 900, other state-
ment relabeling initialized at 100, both with an increment of 10, and insertion of comments
summarizing externals (off)

Y beautifies only optimized blocks and echoes remainder of program (on)

These and other features can be selected and modified by the use of directives within the source files,
applying to portions or to the entireties of the files. The SWITCH directive is the only way to change
FORMAT and other statement label initial values and increments, indentations for different classes of
statements, placement of statement labels, placement of comments, and the continuation line character.
For example, the directives

Army Research Laboratory Supercomputer Facility - APG, MD 15-11

Optimizing Cray Programs - Preprocessors introductory User Guide - hlay 1993

CFPP% S~TCH,FORMAT=900:10,RENUMB=lOO:lO,LABELS=5:R,CONCHR=+
CFPP$ SWITCH,INDDO=3,INDIF=3,INDCN=3,LSTCOL=31

renumber FORMAT and other statement labels to starting values of 900 and 100, respectively, with
increments of 10; rightradjust statement labels into column 5; specify “+” to be the continuation line
character; specify that DO blocks and IF blocks be indented three columns for each nesting level; specify
that continuation lines be indented three columns; and specify that column 31 be the last column available
for indentation, i.e., that no statement begin beyond column 31. Except for the continuation line charac-
ter, these illustrative values are the TIDY defaults.

Detailed instructions for the use of the TIDY function of fpp can be found in the Cray publication, CF77
Compiling System, Volume 4: Parallel Processing Guide, SG-3074 5.0, pages 33 ff and 293 ff.

As stated previously, it is not quite possible to disable all but the TIDY functionality of fpp. One charac-
teristic of fpp which cannot be disabled and which is highly visible to the user desiring ANSI Standard
Fortran 77 output is the suffixion of certain Cray Fortran INTRINSIC subprogram names with an @
symbol. That this characteristic cannot be disabled is not addressed in the level 5.0 Cray documentation.
This characteristic causes no difficulty at all, and, in fact, is a desired result, if the resulting code is then to
be compiled by cft77, with or without intervening fmp processing. However, if the output is intended to
be Fortran 77 source code with no greater degree of nonstandardness than the input, then the presence of
the @ symbols is a corruption of the code.

There are several corrective strategies. One of the simplest is based on the realization that the @ symbols
will almost certainly be sparse. In this case, it is practical to execute grep --n @ on even large source files
to identify and examine those lines containing @ symbols. With or without the grep, appropriate editors
can be used to find and remove the offending @ symbols.

For those cases where the source code is so lengthy or so riddled with @ symbols that manual correction is
undesireable, the fpp output can be piped through the filter
bols inserted by fpp.

of Figure 15.1 to remove exactly those @ sym-

15.3 Multitasking

Vector processing, discussed previously, is a form of parallel processing wherein sets of operands, rather
than individual ones, are processed more or less at the same time. There are no overhead costs due to
interprocess communication because only one CPU is used. Macrotasking, microtasking, and autotasking
are techniques whereby multiple CPUs are used to expedite programs, vectorized or not, which otherwise
take “too long” to complete. All three techniques are referred to as multitasking, and may be combined as
desired within a program, given that the technique(s) chosen are usable with the programming language.
All three techniques are usable with Fortran, but only microtasking and autotasking with C. There is no
saving in terms of CPU time; indeed, a penalty is paid in terms of increased overhead. However, the wall
clock time sometimes can be reduced considerably.

15.3.1 Macrotasking

Macrotasking was the first of the three techniques to be developed. It demands more of the programmer
than the others, and often generates the most overhead. It applies multiple processors to a FORTAN job
at the subroutine level. Macrotasking was designed for long running jobs, often in a dedicated environ-
ment. It is less useful than microtasking for small jobs because it has higher overhead. Macrotasking
involves substantial changes to the program.

The process of macrotasking a program consists of program analysis and the insertion of certain subrou-
tine calls to initiate tasks, wait for completion of tasks, synchronize tasks, handle locks used to control exe-
cution in critical regions of code, and modify tuning parameters within the library scheduler. A task is a
Fortran entry point, typically a subprogram, and is normally completed w.lien a RETURN or STOP is

15-12 Army Research Laboratory Supercomputer Facility - APG, MD

Introductory User Guide - May 1993 Optimizing Cray Programs - Preprocessors

executed. If an error occurs or a task aborts, then all tasks are stopped as quickly as possible.

Among the subprograms used are BARrierASsiGN, BARRELease, and BARSYNChronize;
EVentASGN, EVCLEAR, EVPOST, EVREL, EVTEST, and EVWAIT; LOCKASGN,
LOCKOFF, LOCKON, LOCKREL, and LOCKTEST; and TaSKLIST, TSKSTART,
TSKVALUE: and TSKWAIT. Detailed information may be found in the on-line manual pages and in
the Cray publication, Volume 1: UNICOS Fortran Library Rejerence Manual, SR-2079 6.0.

gawk ’

BEGIN { split(“MOIX$ ABS@
“MAX@ MAX0
“IAN&? OR@
“SHIFTR@ GVMGh@’
” cvMGz@”
” mo d@ abs@
m ma x@ maxO@
” i and@ or@
“shift@ cvmgn@
ii c vmg z@” ,

n = split(“MOD ABS
“MAX MAX0
” IAND OR
“SHIFTR CVMGM
” CVMGZ ”
“mod abs
“max max0
” i and or
“shi ftr c vmgm
“cvmgz”,

1

IABS@

MII’&
IOR@
cvMGN@

iabs@
mi n@
ior@
cvmgn@

IABS
MIN
IOR
GVMGN

iabs
min
ior
cvmgn

INT@ REAL@”
MINO@ AND@’
ISHFlz? SHIFTI@”

cvMGP@ cVMGl@”

i n t@
mi nO@
ishft@
cvmgp@

INT
MINO
I SHFT
GVMGP

int
mi n0
ishft

cvmgp

real@”
a n d@”
shiftl@”
c vmg t@”

REAL II
AND ”
SHIFTL”
CVMGT ”

real”
and”
shiftl”
cvmgt”

\

:

:

:

:
modj

:

:

:

:
\
or ig)

{ for (i = 1; i <= n; i++)

gsub (mod [i 1 J ,,idi] j ,-- ‘D L
print

1 ’

Figure 16.1. Filter for Removing SufIixed Q Symbols in fpp Output

15.3.2 Microtasking

Microtasking was developed after macrotasking to apply multiple processors to a program at the loop
level. It demands much less of the programmer than does macrotasking and adds relatively little syn-
chronization overhead.

The process of microtasking a program consists of program anaiysis and the insertion of certain directives
which cause the compiling system to alter source code and invoke multitasking library routines as neces-

sary . Because the directives appear to other compilers to be comments, microtasking does not reduce the
degree to which a program conforms with the standard.

premult, not a part of the cf77 compiling system, is a preprocessor whose task is to convert microtasking
directives into invocations of the appropriate library routines. It will no longer be available when version

Army Research Laboratory Supercomputer Facility - APG, MD 15-13

Optimizing Crap Programs - Preprocessors Introductory User Guide - hlay 1993

6.0 of the compiling system is released. Its functionality will be, and is currently, available from fmp, the
Fortran multitasking translator. fmp is used also with autotasked code.

Autotasking is essentially enhanced microtasking performed automatically by the compiling system, with
the opportunity for application of the programmer’s insights. These insights are applied by inserting
microtasking/autotasking directives into the source code. Microtasking and its directives are discussed

further in the autotasking section.

Microtasked programs are compatible with autotasking. Detailed information may be found in the CF77
Compiling System, Volume 4: Parallel Processing Guide, SG-3074 5.0.

15.3.3 Autotasking - fmp

Autotasking is the process, performed by the compiling system, of converting “normal,” single processor
Fortran source code, vectorized or not, into a form which will dynamically invoke multiple processors,
based on the extent to which the program can make efficient use of them, and on the extent to which they
are available.

The fpp preprocessor, discussed in the “Vectorization” section and invoked by cf77 -Zv or cf77 -Zp,
not only analyzes source code and inserts directives which ultimately cause the cft77 compiler to produce
vectorized object code (and which influence its operation in other ways), but also analyzes source code and
inserts directives which ultimately cause autotasked object code to be produced. (fpp always prefers vec-
torizing to autotasking.) With the -Zv option, the autotasking/microtasking directives are entirely
ignored, the cft77 compiler being able to interpret only the CDIR.I%/CDIR@ directives.

When the compiling system is invoked with the -Zp option, the fmp preprocessor is invoked after fpp
and before cft77. It is fmp which interprets all the autotasking/microtasking directives. The relation-
ships among the preprocessors and directive types are as follows. AI1 directives begin with a flag in column
1, which identifies them as directives or, when appropriate, as Fortran comments. Each flag has either a
trailing $ or @ and is followed by at least one blank. 8 indicates programmer insertion, while @ indicates
insertion by fpp or fmp.

CFPP% Directives inserted by the programmer to influence the operation of fpp.

CMIC$/@ Directives inserted by the programmer/fpp and interpreted by fmp to produce
autotasked/microtasked object code. Some CMICIg directives inhibit fpp’s vectorization
of certain portions of source code.

CDIR$/@ Directives inserted by the programmer/fpp and interpreted by cft77 to produce vector-
ized code, or to have other effects. Certain CDIR.% directives influence fpp’s operations.

15.3.4 User Interaction with Autotasking

User interaction with autotasking follows a sequence similar to that for vectorization, but has the potential
to be considerably more complex. The preprocessors and compiler can produce output listings and inter-
mediate source files (preprocessors only) which the programmer may examine and alter. Not only is there
a complete suite of directives, but also fmp has a suite of options with which it may be invoked, either
directly or by use of a -Wu”...” construct. Before embarking upon the effort of detailed interaction with
the autotasking process, the programmer should consider whether the potential return is worth the cost.
Detailed information, together with specific programming examples, may be found in the CF77 Compiling
System, Volume 4: Parallel Processing Guide, SG-3074 5.0.

15-14 Army Research Laboratory Supercomputer Facility - APG, MD

Introductory User Guide - May 1993 Optimizing Cray Programs - Preprocessors

15.3.5 Some Useful Utilities

The multitasking package maintains a history trace buffer containing the recent history of a multitasked
program. This buffer is used by the following utilities.

mtdump Examines an unformatted dump of the multitasking history buffer. Generates reports
according to its options.

multimeter Displays graphically the start/stop synchronization events in a multitasked program.
Requires the X Window System.

stategraph Displays graphically the state transitions among tasks and processes in a multitasked
program. Requires the X Window System.

timeline Displays graphically along a time line the connections and events among tasks and
processes in a multitasked program. Requires the X Window System.

Army Research Laboratory Supercomputer Facility - APG, MD 15-15

Optimizing Cray Programs - Preprocessors

Intentionally Left Blank

Introductory User Guide - May 1993

15-16 Army Research Laboratory Supercomputer Facility - APG, MD

Introductory User Guide - May 1993 Applications Software

i6. Applications Software

16.1 The IMSL Library, Edition 10.0
The IMSL Library, Edition 10.0, has been installed on both Crays and is located in
/usr/local/Iib/libimsl.a. (See the chapter, “cf77 Compiling System, ” for information about setting up

library linkages.) The IMSL Library is organized into three main areas: general applied mathematics,
statistics, and special functions. Most of the subprograms are available in both single and double precision
versions. Contact crayca@arl.army.mil or (410) 278-6819/DSN 298-6819 for documentation.

3-m ,_ -r _..l_________ _..I____ ,I_“..___*_*:__ :, ___.._,,I . ,_ &L._ p_, Tine ‘MATti/%IE-RX?Y consists of hdiiareas 01 suuprograllla wuu3c UvcuuIcubauvu 13 ~~uuycx iiibu cut: IUI-

lowing 10 chapters:

1. Linear Systems
2. Eigensystem Analysis
3. Interpolation and Approximation
4. Integration and Differentiation
5. Differential Equations
6. Transforms
7. Noniinear Equations
8. Optimization
9. Basic Matrix/Vector Operations

10. Utilities

The STAT/LIBRARY consists of hundreds of subprograms whose documentation is grouped into the fol-
lowing 20 chapters:

1.
2.
3.
4.
5.
6.
7.
8.
9.

10.
11.

12.
13.
14.
15.

16.

17.
18.

19.

20.

Basic Statistics
Regression
Correlation
Analysis of Variance
Categorical and Discrete Data Analysis
Nonparametric Statistics
Tests of Goodness of Fit and Randomness
Time Series Analysis and Forecasting
Covariance Structures and Factor Analysis
Discriminant Analysis
Cluster Analysis
Sampling
Survival Analysis, Life Testing, and Reliability
Multidimensional Scaling
Density and Hazard Estimation
Line Printer Graphics
Probability Distribution Functions and Inverses
Random Number Generation
Utilities
Mathematical Support

Army Research Laboratory Supercomputer Facilit,y - APG, MD 16-I

Applications Software Introductory User Guide - hlay 1993

The SFUN/LIBRARY consists of almost 200 subprograms whose documentation is grouped into the fol-

lowing 12 chapters:

1.
2.
3.
4.
5.
6.
7.

8.
9.

10.
11.
12.

Elementary Functions
Trigonometric and Hyperbolic Functions
Exponential Integrals and Related Functions
Gamma Function and Related Functions
Error Function and Related Functions
Bessel Functions
Kelvin Functions
Bessel Functions of Fractional Order
Elliptic Integrals
Weierstrass Elliptic and Related Functions
Probability Distribution Functions and Inverses
Miscellaneous Functions

16.2 The IMSL Library, Edition 9.2

The previous edition of the IMSL library, Edition 9.2, is no longer available on either Cray. There are

substantial changes in subroutine names and arguments between editions 9.2 and 10.0. The file
/usr/pub/imsl.lO contains a list of edition 9.2 names and directs the user to the edition 10.0 subroutines
by which they are replaced. It also contains information on the compatibility of the edition 9.2 and edi-
+:,., In n ,,.k,,,,.t;,,c (rl”11 I”.” DU”I”U”,,,G;13.

16.3 LINDO - Linear, INteractive, Discrete
Optimizer

Linear programming is a mathematical procedure for determining optimal allocation of scarce resources.
LINDO is an interactive program used to formulate and solve linear programming problems. The Cray
X-MI’ command line is /usr/local/bin/lindo.

16.4 PVI Graphics

Precision Visuals, Inc.
utilities including:

. DI-3000

(PVI) of Boulder, CO, provides a number of Fortran callable 2-D and 3-D graphics

. Grafmaker

. Contouring

. DI-Textpro

. GK-2000

Each of these graphics utilities interfaces with a common device driver library consisting of 50 different
device drivers which support graphics terminals, pen plotters, laser printers, and color recording devices.
The PVI graphics software has been installed on both the Cray-2 and the Cray X-MP. A complete list of
the supported devices can be found in /usr/pvi/bin/DRIVER-LIST.

16-2 Army Research Laboratory Supercomputer Facility - APG, MD

Introductory User Guide - May 1993 Applications Software

PVI also provides two interactive graphics utilities:

. PicSure/Plus

. Metafile/CGM Translator

These two packages interface with the same device driver library as the Fortran callable packages. The
PicSure library is an interactive package invoked from the shell. The metafile library is available both to
Fortran programs and by use of the interactive Metafile Translator. A metafile is a sequential file which
contains a series of graphics images.

Documentation for the PW products includes:

. DI-3000 User’s Guide and Quick Reference Guide

. Grafmaker/Grafeasy User’s Guide and Quick Reference Guide

. Contouring System User’s Guide

. GK-2000 User’s Guide and Quick Reference Guide

l Metafile Translator User’s Guide

. PicSure User’s Guide and Quick Reference Guide

. PicSure Chart Book

16.4.1 Fortran Callable Subroutines

16.4.1.1 DI-3000

This is a very flexible, low level graphics library which supports full device color, 2-D and 3-D primitives,
shaded pattern areas, full graphics input, real time image manipulation, and object modeling. This library
can be used to develop customized graphics applications in which the programmer needs precise control
over the characteristics of the final graphical output. DI-3000 consists of over 200 user-callable subrou-
tines. An executable created with the DI-3000 library is output device independent; that is, changing an
environment variable is sufficient to cause the output to be sent to a different device and to utilize fully
that device’s capabilities. See the following section, “PVI Utiiization,” for more information.

16.4.1.2 Grafmaker and Grafeasy

This library contains high level Fortran callable graphics subroutines which, in turn, invoke DI-3000 sub-
routines. It can be used for building routine applications such as might produce line graphs and bar and
pie charts.

Although not as flexible as DI-3000, this library permits programs producing routine data presentation
output to be developed quickly. If more precise control over certain chart attributes is needed, the lower
level DI-3000 subroutines can be invoked explicitly along with the Grafmaker subroutines.

Grafeasy is a related product. It creates rudimentary data presentation charts and provides minimal pro-
gramming options. This product can be very useful for black and white terminal display images.

Army Research Laboratory Supercomputer Facility - APG, MD 16-3

Applications Software Introductory User Guide - May 1993

16.4.1.3 DI-Textpro

This option to DI-3000 invokes a library of high precision, presentation quality fonts. Some of the fonts

available follow, in outline form. Variations, including italics, are available.

16.4.1.4 Contouring

Contouring library subroutines may be invoked from within DI-3000 based programs. This Fortran
library is used to create mesh or contour map surfaces from gridded or random data. The contouring sys-

tem provides monochrome and color contours, color-filled maps, 3-D contour lines, 3-D mesh surfaces, hid-

den line removal, 3-D axes, and marker/annotation control. Because the contouring library invokes
DI-3000 subroutines, the programmer has complete control over chart features and device independent

graphic output.

16.4.1.5 GK-2000

This library, consisting of over 200 user-caNable Fortran subroutines, is completely separate from
DI-3000. The GK-2000 package is certified for compliance with the Graphical Kernel System (GKS)

level 2b specifications. GKS is a world-wide, machine and device independent graphics standard for 2-D

graphics. GKS compliance means that the set of subroutine invocations used to produce graphics output is
standardized. The standard specifies subroutine names, arguments, and actions. Therefore, this software

is particularly valuable for writing portable code.

16.42 PVI Utilization

16.4.2.1 Environment Variables

A number of environment variables must be set before using the PVI software:

For /bin/sh users, in the -profile file, or elsewhere:

PVLROOT=/usr/pvi

PVI-LINK=dynamic

PVI-DEV_l=~zz

[PVIDEV_n=zzz]

I-1
PVI-LDFLAGS=jifename

PATH=$PATH:$PVI_ROOT/bin

export PVI-FCOOT PVLLINK PVLDEV-1 [...I PATH

16-4 Army Research Laboratory Supercomputer Facility - APG, MD

Introductory User Guide - May 1993 -4pplications Software

For /bin/csh and /bin/tcsh users, in the .login file, or elsewhere:

setenv PVLROOT /usr/pvi
setenv PVLLINK dynamic
setenv PVLDEV-1 zzz
[setenv PVIDEV-n zzz]

]--*I
setenv PVLLDFLAGS filename

set path=($path $PVLROOT/bin)

PVLDEV_n specifies a location where temporary ioader information can be written. A conventional
practice is to use /tmp/username for filename. zxz is a 3-character code for the device driver to be used
as the output device. PVI programs may use up to eight different output devices concurrently. The dev-
ices are assigned by environment variables PVIDEV-n, n from 1 through 8, inclusive. PVI_DEV_1 is
required and is the primary output device; the others are optional.

16.4.2.2 Compiling and Loading PVI Programs

The following commands will compile and load PVI programs. Both scripts invoke the cft77 compiler,
followed by the segldr. To create an executable using DI-3000, Grafmaker, DI-Textpro, and contouring,
use:

di3load [-SS] [-HP] [-HLR] [-MF] [-GM] [-TP] [-CN] [segldr-options] fifenames.f

where the options specify

-ss segmentstoragelibrary

-HP high precision library

-HLR hidden line removal

-MF metafile library

-GM Grafmaker/Grafeasy library

-TP DI-Textpro library

-CN contouring library

To create an executable using GK-2000, use:

gk2load [-MF] [-SS] [segfdr-options] fi1enames.f

where the nntinns qlecify vr ____I

-MF metafile library

-SS segment storage library

16.4.3 Interactive Graphics Applications

16.4.3 .I PicSure/Plus

PicSure is an interactive computer graphics software system for generating 2-D charts and graphs with
simple sequences of English-like commands. Little knowledge of programming is required. This package
can be used to present data in many different forms. The basic PicSure chart types are line graphs and
bar, pie, and text charts. Variations of the basic chart types, such as stacked line graphs, horizontal bar
charts, stacked bar charts: and scattergrams are available. Multiple smaller charts can be combined into a
single composite chart.

Army Research Laboratory Supercomputer Facility - APG, MD 16-5

Applications Software Introductory User Guide - May 1993

Usually, Pi&ire is run as an interactive program, but it can accept commands from an external file, as if
they were being entered in sequence from the keyboard. The user enters a sequence of commands to build
a chart, which then is drawn on one or more (up to eight) graphics display devices, or is stored in a
metafile. Any device supported in the common device library can be used with PicSure. See the following
sections on Metafile/CGM for more details. The PicSure User’s Guide provides an excellent introduction

16.4.3.2 Using PicSure

A number of environment variables must be set before using PicSure.

For /bin/& users, in the .profiie Iiie, or eisewhere:

PVI_ROOT=/usr/pvi
PATH=LPATH:$PVLROOT/bin
export PVLROOT PATH

For /bin/csh and /bin/tcsh users, in the .login file, or elsewhere:

setenv PVLFCOOT /usr/pvi
set path=($path $PVLROOT/bin)

To invoke PicSure, execute

picsure [dmf [... drvB]]

where each of the drvn is a 3-character code for the device driver to be used as an output device, as dis-
cussed previously in this chapter. If no arguments are specified, a prompt will be issued for at least one

16.4.3.3 Metafile/CGM Translator

The Metafile System provides a method for storing graphical information from an application as an exter-
nal file which is both device and machine independent. The external file, called a metafile, is a sequential
file of images created by graphics software. DI-3000, GK-2000, and PicSure can produce metafiles. The
images in a metafile are created for a virtual graphics device and become associated with a physical device
only at the time of actual rendering of the graphics output into an image.

A Computer Generated Metafile (CGM) is a different kind of metafile. It conforms to the first interna-
tional standard for metafile images and is not only machine and device independent, but also is indepen-
dent of the application which produced the image.

16.4.3.4 Using Metafile/CGM Translator

To use the metafile system, the user must first establish the appropriate environment variables, as dis-
cussed previously for other PVI software. There are two different procedures available for viewing
metafiles. The first,

mftran [options] [drvl . ..I

is used to view PVI format metafiles, to produce additional PVI format metafiles, or to translate such files
to the CGM format. The other,

cgmint [drvl...]

is used to convert CGM metafiles to a particular graphics output device format or to the PVI metafile for-

mat. options have to do with conformance to the CGM standard and drvl . . . is a list of up to eight device

driver codes, as discussed previously.

16-6 Army Research Laboratory Supercomputer Facility - APG, MD

Introductory User Guide - May 1993 Applications Software

DISSPLA (Display Integrated Software System and Plotting LAnguage) is a high level Fortran graphics
subroutine library. The library on the Cray X-MI’ includes over 400 Fortran subroutines and functions
which can produce general purpose 2-D and 3-D graphics, and three option packages which can produce,
for example, maps with correct political boundaries, calendar axes, and applications conforming to the
international standard Graphical Kernel System (GKS). CA-DISSPLA/CA-GKS supports over 300
different graphics devices. Basic instructions on the use of a particular device are provided in the directory
/__-- /1___1,1:___,_1, ,A_, , uar, L”W%+I, ulaa~,laLI, UVL;.

To be compatible with CA-DISSPLA or CA-GKS, the application program must be written in a
language compatible with Fortran. The application is then compiled and linked with the appropriate
object libraries:

/usr/local/dissplall/Iib/libdcc.a
/usr /Iocal/dissplall/lib/libdis77.a , ---I
/usr/local/dissplall/lib/libdisman77.a
/usr/local/dissplall/Iib/libgks.a
/usr/local/dissplall/lib/libint.a

to produce an executable program. cf77 and segldr can be invoked explicitly with one or more -1
options, or their equivalents, or one of the compiler/linker scripts provided with the CA-DISSPLA pack-
age can be used. To use the CA-DISSPLA linker, enter /usr/iocal/dissplall/dis77link program,
where program is the base portion of the filename, pr0gram.f. To use the GKS linker, enter
I~-~~ II- mm1 ,J!___,_. l /_,__,$_,_ _______ lT^^L. 1:~1,,,,,,.4..,.." .._ ,,,,,..+,hl, ,,,,A "..nnrnm /usr/rocai/ alssplalr/glcsmuc yruyrurrr. Lli%Ll, ,,unc, p‘"uuLwJ aI, cAsLuua"Iz; AAa,IIsu pr"y‘UI#b.

The environment variable SFDATA must be set prior to executing the program. For /bin/sh users, in
the .profile file, or elsewhere:

SFDATA=/ /I usr ocal/dissplall/data/dsdf.dat

export SFDATA

For /bin/csh and /bin/tcsh users, in the .login file, or elsewhere:

setenv SFDATA / usr/local/disspIall/data/dsdf.dat

16.6 CA-DISSPLA 10.0 Graphics Library

CA-DISSPLA 10.0 is the release level running on the Cray-2, probably until mid-1993, at which time
level 11.0 is scheduled to become the released version for the Cray-2. Level 10.0 functionality is the same
as that of level 11.0, discussed previously. Library names, locations, and linkages, however, are different,
as follows:

/usr/local/lib/disspla.lO/dcclib.a

/usr/local/lib/disspla.lO/dislib.a

/usr/local/lib/disspla.lO/gkslib.a

/usr/local/lib/disspla.l0/intlib.a

/usr/local/lib/disspla.lO/pvilib.a

Special linker programs are not provided in CA-DISSPLA 10.0. The libraries must be linked with a user’s
object files using a special segldr command, segld5, which is designed to reconcile incompatibilities
between the CA-DISSPLA 10.0 libraries and the default scientific libraries used by the UNICOS 6.0
segldr. A user must do a separate compilation, cft77, followed by a segld5 invocation, instead of using
the cf77 compiling system which automatically calls the normal segldr. segld5 has the same syntax as

. . TxTOc.l-lT A ,n n ,:L___:__ ____ I__ ____:f_.l :_ &I._ .._.._, ______ l+ ;e ..n+ _.,n_.T seglar; therefore, the CA-ur>DrLA 1u.u nurar~es may ue specmeu 111 bne usual m4n11e:1. II, 13 11~~ IIFLC~-
sary to set an environmental variable corresponding to version 11.0’s SFDATA.

Army Research Laboratory Supercomputer Facility - APG, MD 16-7

Applications Software Introductory User Guide - May 1993

16.7 MPGS

MPGS (MultiPurpose Graphics System) is a Cray Research, Inc. product which interactively performs dis-
tributed visualization postprocessing of data files resident on a Cray supercomputer. It is discussed in the
chapter, “Scientific Visualization.”

16.8 BRL-CAD

BRL-CAD (Ballistic Research Laboratory CAB) is a large, interactive, public domain, combinatorial solid
geometry (CSG) based modeling system written entirely in-house at the then USABRL. It is discussed in
the chapter, “Scientific Visualization.”

16.9 BRLLIB
BRLLIB is a collection of Fortran utility subprograms formerly available on BRLESC I and II (pronounced
“burlesque,” and meaning Ballistic Research Laboratory Electronic Scientific Computer; computers built
in-house during a time when BRL could and did build better machines than were available in the markee
..l.a,,\ -nrl th.,n fin tha RR1 mFR r.nmm~ta=r= ~~nAc.r the rnllwt.ivc. nnrn~ “B?&ldBR.” h_ iargt: parq these P,QW, 4LlU “11L1‘ “I1 “I&.+ UlCY v *Y-L* ~“‘*.~-‘“‘&U UllUIl “I... “V1.“1_.. 1 .-.--..-,
subprograms have been in more or less continuous use by scientists and engineers of the former BRL for
over 25 years. They are not provided as a library, but as a collection of separate source code files,
/usr/local/brllib/subprograms/*.f on the Cray X-MI’, which can be incorporated into a user’s pro-
grams. The man page gives a description of the subprograms available. Each subprogram contains more
complete internal documentation. In addition, more complete documentation for all of the subprograms is
collected into the file /usr/local/brllib/descriptions.

16.10 MR - Stepwise Multiple Regression

The BRL Stepwise Multiple Regression Program, named MR, was written long ago at BRL for use on
BRLESC I and II (pronounced “burlesque,” and meaning Ballistic Research Laboratory Electronic
Scientific Computer; computers built in-house during a time when BRL could and did build better
machines than were avaiiabie in the marketpiacej in the FC-RAST ianguage (an eariy ianguage more or
less similar to Fortran). The program was subjected to any number of rewrites/patches to cast it into
various nonstandard versions of Fortran, to make it run on newer machines, and to introduce additional
functionality. MR source code is available on the Cray X-MP as the collection of .f files in
/usr/local/brllib/mr.

The MR version currently in use:

supersedes all earlier versions.

runs on many ARLSCF machines, inciuding both Crays.

is entirely in accord with the ANSI Fortran 77 standard, except that, for legibility, the code is
entirely in lower case characters, except certain constants.

is more modular and structured than its predecessors.

takes advantage of the UNIXbased computing environment to make input and output much
more convenient than its predecessors.

16-8 Army Research Laboratory Supercomputer Facility - APG, MD

Introductory User Guide - May 1993 Applications Software

. does not have its predecessors ’ “rescale” capability, which capability is better implemented by
the user as a part of the physical phenomenon description in the form subroutines.

. uses PVI GRAFMAKER software and the GRAFMAKER - UNM interface to produce plots
equivalent to those of its predecessors.

The MR program is extremely general in that it can be applied to any physical phenomenon; there is, how-
ever, a cost associated with this generality. The MR source code proper contains all the mathematics
required for the regression analysis, but the modeling specific to the details of the physical phenomenon of
interest is absent. The user must encode in ANSI Standard Fortran 77 subroutines (and, if desired, in
other subprograms invoked by them) the details of the physical relationships thought to exist within the
data being regressed.

MR source code is available on the Cray X-MI’ as the collection of .f files in /usr/local/brllib/mr. Of
those .f files, the ones with base names blockdata, dropg, forml, form2, form3, form4, form5,
form6, form7, form8, formlO, liofst, and prepar are not a part of MR proper, but rather address cer-
tain exterior ballistics analyses, and are provided merely as examples. File form9.f is a skeleton display-
ing the minimum requirements of the form subroutine interface. An executable is not provided because
certain environmental variables required by the GR.AFMA.KER - UNX interface must be available at
load time (the variables’ values change from one user to another), and, of course, because different uses
require the incorporation of different form subroutines. Hence, before his first execution of MR, each user
must define his own set of environmental variables and create his own PVI output device configuration file
(if the graphics output capabilities are to be used). Before the first MR analysis of a given phenomenon, a
user must encode the form subroutines modeling that phenomenon, compile the collection of .f files proper
to MR along with the ones specific to the phenomenon of interest, and load the resulting .o files and
appropriate libraries to obtain an executable. The load sequence required for PVI software is intricate and
has been encapsulated in the script di3load.

16.11 SIMSCRIPT II.5
SIMSCRIPT 11.5, a language designed specifically for simulation, is available on the Cray-2.

The SIMSCRIPT II.5 compiler, /usr/local/bin/simc, translates a program written in the SIMSCRIPT
II.5 programming language into C, invokes cc to produce one or more .o files, and, by default, invokes
segldr to produce the executable, a.out. The SIMSCRIPT II.5 loader, /usr/local/bin/simld, invokes
segldr to load the specified .o files and appropriate objects from libraries to produce the executable,
a.out. By convention, files containing SIMSCRIPT II.5 source code are given names that end in .sim.

To compile a SIMSCRIPT II.5 program, enter:

simc [options] files.sim

where the options are:

-c Suppresses loading and produces a .o file with the same base name as the SIMSCRIF’T
source file.

-C Generates additional code to perform run time checking of every array element reference
and every attribute reference; this is recommended until the program is fully debugged.

-f Produces FLOWTRACE profiling information during execution.

-g Generates tables associated with each routine to provide a more elaborate traceback of the
program state in the event of a run time error or TRACE.

-1 Writes a listing to standard output which includes the source statements and any diagnos-
tic messages and, if -x or -X have been specified, the local and/or global cross references.

-0 ezecutable When an executable is produced, name it ezecutable instead of a.out.

Army Research Laboratory Supercomputer Facility - APG, MD 16-9

Applications Software Introductory User Guide - May 1993

-S Produces file(s) containing the generated source code for the routine together with the SIM-
SCRIPT source code as comments.

-v Inhibits the listing of the preamble and the generation of any “scripted” routines used to
perform such things as set management and entity creation and deletion.

0~~~~~~~~~~~~~ _-.-__I__ ________ -w suppresses warumg messages.

-x Writes to the listing the local cross references for each routine.

-X Writes to the listing the global cross references for each routine.

To produce an executable from existing SIMSCRIPT II.5 object (.o) files, enter simld [-o name] files.0,
where -0 name specifies a name other than a.out for the executable.

SIMSCRIPT II.5 executables are executed in the usual manner. Parameters specified on the command line
are available to the program in the SIMSCRIPT II.5 global TEXT array, PARM.V. For example, given
the command:

a.out-j 5 xys.data

the PARM.V array is initialized as follows (SIMSCRIPT II.5 source code):

DIM.F(PARM.V(*))=3
D A DXK VI I\=‘*_:”
I NCI”A. . \a,

PARM.V(Z)=“&
PARM.V(3)=“xye.data”

A SIMSCRIPT II.5 program uses unit 5 for standard input, unit 6 for standard output, and unit 98 for
standard error. I/O involving these units may be redirected in the usual way.

16.12 LQGALPHA
LQGALPHA is a library of Fortran programs for the development and analysis of linear multivariable
control system designs (both continuous and discrete time) based on the Linear-Quadratic-Gaussian
(LQG) design and singular value analysis methodologies. LQGALPHA can be used to

l design linear feedback systems

. analyze linear systems using classical tools such as Bode plots, Nyquist plots, Inverse Nyquist
plots, and Nichols charts

. analyze linear systems using modern singular value analysis

. simulate deterministic and stochastic linear systems

LQGALPHA is available on the Cray X-MI’. Additional information and documentation may be
obtained from the licenser,

ALPHATECH, Inc.
2 Burlington Executive Center
111 Middlesex Turnpike
Burlington, Massachusetts 01803
I-617-273-3388

16.13 PROLOG

Prolog (PROgrammation en LOGique) is a nonprocedural programming language based on the first order
predicate calculus. J. W. Lloyd’s Foundations of Logic Programming (Springer-Verlag 1985) provides a
description of the mathematical underpinnings of Prolog and other logic programming systems. The

16-10 Army Research Laboratory Supercomputer Facility - APG, MD

Introductory User Guide - May 1993 Applications Software

language was designed by Alain Colmerauer of the University of Marseilles and originally implemented
there by Philippe Roussel in 1972. Prolog saw little use outside of European universities until 1980, when
it was chosen as the implementation language for the Japanese Fifth Generation computer project. Since
then, it has grown in popularity as a language for prototyping, problem specification, expert systems
development, and research in artificial intelligence.

Cray Prolog, available only on the Cray X-Mp, was designed and developed at Cray Research by Peter
Klausler. It uses several novel techniques, including partial clause compilation and vectorized structure
copying to provide efficient execution of logic programs on Cray Research supercomputers.

Prolog is described in the book Programming in Prolog by W. Clocksin and C. Mellish. Cray Prolog
differs from Clocksin and Mellish at least in that, in Cray Prolog:

.

.

.

.

.

.

.

.

.

.

.

.

It is not possible to find more than one outcome in a search. This is a fatal problem.

Periods terminate clauses if and only if they are followed by white space characters, are not
preceded by another period, and are not nested within braces, brackets, or parentheses, with
the following exception.

Integers at the end of a query are not parsed correctly in that “. ” after an integer is parsed as
a decimal point.

Cray prolog thinks [] is not atomic; i.e., atomic([]). fails when it should succeed.

Atoms defined to be prefix operators may not be used as functors.

At end of file, read= will forever return the term ?-end.

The predefined predicate clause is defined as clause (X), where Xunifies with a clause in the
database.

The predefined predicate debugging is defined as debugging (X), where Xmatches a list of
active spy point specifications.

compile, once, dump, and system are predefined predicates.

write, display, and listing print unbound variables with their original names.

The NOLC and LC predefined predicates are not supported.

The operators “not” and “,” have slightly different signatures; “not” is “fv, not (fz)“, and
‘0” is “z/y, not (yfi)“.

16.14 SCIPORT
The SCIPORT library, available on the Cray X-MP as /usr/local/sciport, is a portable implementation of
the Cray SCILIB Mathematical Library. It was developed by General Electric Corporate Research and
Development to enhance convertibility between local computer systems, where applications are developed,
and the Cray environment, which is suited to production use. The SCIPORT library is a collection of
portable utility subroutines encoded in Fortran. SCIPORT reproduces the functions of corresponding rou-
tines in Cray Research’s SCILIB. Thus, the user developing applications locally can use SCILIB calls dur-
ing program development with the assurance that results will be consistent (within floating point precision)
between the local computer and the Cray.

In addition, these portable, compact, and efficient SCIPORT routines provide a convenient source for com-
monly used mathematical software, such as the BLAS (B asic Linear Algebra Subroutines), which occur fre-
quently in higher level libraries like LINPACK, EISPACK, and others.

Army Research Laboratory Supercomputer Facility - APG, MD 16-11

Applications Software Introductory User Guide - May 1993

16.15 ABAQUS
ABAQUS, available on the Cray X-MP, is a general-purpose finite element analysis program for use in the
numerical modeling of structural response. Stress problems can be divided into two types, static and
dynamic response, depending upon whether inertial effects are significant. ABAQUS permits the same
analysis to be used for both the static and dynamic phases. Procedures are available within ABAQUS for
the following:

l

.

.

.

.

.

.

.

.

.

.

.

.

.

.

static stress analysis

dynamic analysis

heat transfer

element removal/replacement

coupled pore fluid diffusion and stress

eigenvalue buckling prediction

coupled heat transfer/stress analysis

natural frequency extraction

J-integral evaluation

geostatic stress state

dynamic analysis of linear systems by modal methods

substructuring/superelements

loading specification

rezoning

acoustic and coupled acoustic-structural analysis

The scripts

/usr/local/abaqus/bin/abaqus
/usr/local/abaqus/bin/abaplot
/usr/local/abaqus/bin/abapost

constitute the user interface with ABAQUS. Documentation can be obtained from

Hibbitt, Karlsson & Sorensen, Inc.
1080 Main Street
Pawtucket, RI 02860
l-401-727-4200

16.16 MSC/NASTRAN
This software is not accessible to users pending availability of funds to meet licensing costs. User organi-
zations willing to provide partial funding should contact the Chief, High Performance Computing & Com-
munications Branch, listed in Appendix B.

MSC/NASTRAN is a large-scale, general-purpose digital computer program which can be used to solve a
wide variety of engineering problems by the finite element method. It has been developed and is main-
tained by the MacNeal-Schwendler Corporation (MSC) f rom the original NASTRAN general-purpose
structural analysis program of the National Aeronautics and Space Administration (NASA). Executables
and example data and result sets are in directory /usr/src/src3d/Naatran on the Cray X-MP.

16-12 Army Research Laboratory Supercomputer Facility - APG, MD

Introductory User Guide - May 1993 Applications Software

MSC/NASTR.All is invoked by

/usr/local/bin/nastran [jid=]ifiF~t-fife-base-nanze [options]

Options are discussed in the man pages and in MSC documentation.

The ARLSCF has only reference copies of the MSC documentation. Organizational/personal copies of the

documentation may be purchased directly from MSC. Call the Product Service Center at l-800-336-4858
for current Government pricing. Purchase orders should be sent to:

MacNeal-Schwendler Corporation
Product Service Center
815 Colorado Blvd.
Los Angeles, CA 90041-1777

16.17 MSC/DYNA
This software is not accessible to users pending availability of funds to meet licensing costs. User organi-
zations willing to provide partial funding should contact the Chief, High Performance Computing & Com-
munications Branch, listed in Appendix B.

MSC/DYNA is a 3-D finite element code for analyzing the dynamic, nonlinear behavior of solid com-
ponents and structures. It uses explicit time integration and incorporates features to simulate a wide range
of material and geometric nonlinearity. It is particularly suitable for analyzing transient events that
incorporate a high degree of nonlinearity. Executables and example data and result sets are in directory
/usr/src/src3d/DynaS on the Cray X-MP.

MSC/DYNA is invoked by

/usr/local/bin/dyna [jid=]input-fife-base-name [options]

Options are discussed in the man pages and in MSC documentation.

The ARLSCF has only reference copies of the MSC documentation. Organizational/personal copies of the
documentation may be purchased directly from MSC. Call the Product Service Center at l-800-336-4858
for current Government pricing. Purchase orders should be sent to:

MacNeal-Schwendler Corporation
Product Service Center
815 Colorado Blvd.
Los Angeles, CA 90041-1777

16.18 MSC/PISCES
This software is not accessible to users pending availability of funds to meet licensing costs. User organi-
zations willing to provide partial funding should contact the Chief, High Performance Computing & Com-
munications Branch, listed in Appendix B.

MSC/PISCES P-DELK is a 2-D explicit finite difference computer program used to study the response and
interaction of fluids and solids to static or dynamic loads.

Shell scripts, executables, and example data and result sets are in directory /usr/src/src3d/Pisces.v30
on the Cray X-MP.

The ARLSCF has only reference copies of the MSC documentation. Organizational/personal copies of the
documentation may be purchased directly from MSC. Call the Product Service Center at l-800-336-4858
for current Government pricing. Purchase orders should be sent to:

Army Research Laboratory Supercomputer Facility - _4PG, MD 16-13

Applications Software Introductory User Guide - May 1993

MacNeal-Schwendler Corporation
Product Service Center
815 Colorado Blvd.

Los Angeles, CA 90041-1777

16.19 MSC/DYTRAN
This software is not accessible to users pending availability of funds to meet licensing costs. User organi-
zations willing to provide partial funding should contact the Chief, High Performance Computing & Com-
munications Branch, listed in Appendix B.

MSC/DYTRAN version 2 is a 3-D finite element code particularly suitable for analyzing transient events
involving large deformations, a high degree of nonlinearity, and interactions between fluids and structures.
Lagrangian and Eulerian processors are available.

Shell scripts, executables, and example data and result sets are in directory /usr/src/src3d/Dytran on
the Cray X-MP.

The ARLSCF has only reference copies of the MSC documentation. Organizational/personal copies of the

documentation may be purchased directly from MSC. Call the Product Service Center at l-800-336-4858
for current Government pricing. Purchase orders should be sent to:

MacNeal-Schwendler Corporation
Product Service Center
815 Colorado Blvd.

Los Angeles, CA 90041-1777

16-14 Army Research Laboratory Supercomputer Facility - APG, MD

Introductory User Guide - May 1993 Scientific \‘isualization

17. Scientific Visualization

l

17.1 Introduction

Scientific visualization is the rendering of scientific data as images. Its end product is often a video anima-
tion, but it encompasses still image production and interactive data exploration. The data are often the
result of computations performed within a grid system, but data from other types of computation and
experimental data also can benefit from visualization techniques.

Scientific visualization has two major purposes: to assist scientists and engineers in their work, and to
explain and promote the science or engineering discipline to others. The requirements for the graphics
used in these two situations often differ. In the former, the graphics must facilitate detailed examination
of the data, while in the latter, the graphics must be attractive and easily understood by the uninitiate.

Scientific visualization provides a capability to present traditional data in nontraditional and innovative
ways. For example, computer solutions of difficult or intricate problems often produce immense quantities
of numerical data, quantities so large as to defy attempts at synthesis to obtain understanding of the
phenomena. For years, such large data sets routinely have been rendered as X-Y plots or contour plots on
monochrome terminals and pen plotters. Today, software and hardware exist to present the same infor-
mation as 3-D, light source shaded, colored surfaces, conveying more information in a much more readily
apprehended manner. In addition, certain variables (e.g., time, speed, fraction of a particular constituent
in an alloy or chemical mixture) may be parameterized to produce sets of individual solutions. The indivi-
dual solutions can be visualized and then displayed sequentially to achieve animation, where the “action”
highlights dependence upon some variable of particular interest. Visualizations, static or dynamic, can be
viewed from different directions and zoomed to provide an overall appreciation of the data set in its
entirety or very close examination of its smallest details.

These capabilities for overall synthesis and almost simultaneous differentiation of detail are provided by no
technique other than visualization, and they can improve dramatically an investigator’s insight into a
problem.

17.2 Resources

Several organizations have combined their resources, facilities, and equipment to create the unclassified
visualization laboratory located in Building 390, Room 133. This facility, although of limited capacity, is
available to interested parties for visualization and animation production work. A Silicon Graphics (SGI)
440VGX with approximately 10 GB of disk storage is the central computing server, and there is an SGI
420VGX with approximately 20 GB of high-speed disk storage for special applications. In addition, facil-
ity personnel are available to assist organizations with large requirements in developing their own visuali-
zation capability.

A similar cooperative effort has resulted in the classified animation facility in the building 309 computer
site. An SGI 320VGX system and miscellaneous video equipment have been procured and soon will be
available for general use.

The Scientific Visualization Team periodically sponsors seminars and open houses to announce and demon-
strate new resources, to educate users, and to demonstrate visualization techniques. For additional infor-
mation and assistance, contact the team via electronic mail at vis@arl.army.mil.

Army Research Laboratory Supercomputer Facility - APG, MD 17-1

Scientific Visualization Introductory User Guide - May 1993

17.3 Hardware

Currently, the hardware inventory for the two visualization facilities is:

. SGI 4D/440VGX (64 MB memory; 8, 1.2 GB SCSI drives; multibuffer)

. SGI 4D/420VGX (64 MB memory; 8, 3 GB IPI drives; multibuffer)

. SGI 4D/320VGX (64 MB memory; 1, 1 .l GB IPI drive)

. Abekas A60 networked digital video disk

. Abekas “Solo” A34 Video Mixer and Production System

. Chromatek 9120 scan converter

. Faroudja RGB to NTSC encoder

. Tektronix TSG-170A synchronization generator

l Tektronix 1870R measurement set

. Panasonic TQ-3031F video disk player/recorder

l Panasonic TQ-3032F video disk player

. Sony BW-870 U-matic (3/4 inch) SP VCR

. Sony VO-9600 U-matic (3/4 inch) SP VCR

l Lyon-Lamb MiniVas VTR controller

. Spatial Systems Spaceball

17.4 Software

Because of its complexity, the visualization software cannot be described in detail in this document. More
complete descriptions and usage information than are presented herein can be obtained from the Scientific
Visualization Team (email: vis@arl.army.mil). In general, the software packages are not run on the
ARLSCF Crays (MPGS, whose description follows, is an exception); instead, they are used to postprocess
large amounts of data often associated with applications running on the Crays. The software inventory is
expanding as the Scientific Visualization Team investigates new software packages which have the poten-
tial to meet the needs of the scientific computing community. The scientific visualization packages of pri-
mary interest are:

. MPGS (MultiPurpose Graphics System)

. BRL-CAD

l Advanced Visualizer

. Data Visualizer

. PV-Wave

. BRL-ShAYD

17.4.1 MPGS - MultiPurpose Graphics System

MPGS is a Cray Research, Inc. product which interactively performs distributed visualization postprocess-
ing of data files resident on a Cray supercomputer. It is distributed between a Cray running UNICOS and

17-2 Army Research Laboratory Supercomputer Facility - APG, MD

Introductory User Guide - May 1993 Scientific 1’isualization

UNIX-based workstations, either Silicon Graphics workstations in the IRIS-4D series, including Indigo, or
IBM RS6000 workstations with graphics upgrades. Communication between the workstation and the
supercomputer is effected via the TCP/IP network protocol. Two versions of MPGS are available on each
ARLSCF Cray, /usr/local/bin/mpgs3.5 and /usr/local/bin/mpgs4.1, to accommodate the operat-
ing system level of the workstation involved. There is no charge for installing the workstation portion of
MPGS.

The Cray system handles memory-intensive and CPU-intensive tasks, and the workstation, local graphics
manipulations such as rotation, zoom, hidden line removal, and key-frame animation. This workload dis-
tribution and the continued residence of the dataset on the Cray ensure the efficient use of both computer
systems and minimize network data transfers.

MPGS is useful for the visualization of data in almost any scientific or engineering area, e.g., structural
analysis, computational fluid dynamics, electromagnetics, and thermodynamics. Its key features are:

. interactive, menu driven

. has a flexible parts structure

. supports dynamic transformations

. supports line drawings and hidden line drawings

. supports false color and shading

. can display all nodes in a computational mesh

l produces contours (isolines) of equal scalar magnitude

l processes scalar, vector, and discrete particle data

. supports arbitrary 2-D clipping planes

MUGS input files must be in the MPGS file format, or in the Movie-BYU format. Converters are avail-
able for several popular data file formats such as Dyna3D, Nastran, Patran, and Plot3D. Generally, these
interactive data converters prompt the user for information about the input file and create the appropriate
MPGS output file.

17.4.2 BRL-CAD

BRL-CAD is a large, combinatorial solid geometry (CSG) based modeling system written entirely in-house
at the then USABRL. It is in the public domain and is installed on the two ARLSCF Crays and various
other ARLSCF machines. Its main components are a solid model editor (MGED), a ray tracing library for
model interrogation (librt.a), a generic frame buffer library with full network display capability (libfb.a),
and a large collection of software tools for frame buffer and image manipulation and analysis. These utili-
ties, augmented by in-house format converters, color mappers, etc., have been a significant component of
visualization work to date.

Documentation for BRL-CAD is available from the ARLSCF staff, in the man pages, and in the USABRL
document entitled The Ballistic Research Laboratory CAD Package.

17.4.3 Wavefront: Advanced Visualizer

This software is licensed for individual Silicon Graphics workstations and is available on several SGIs in
the visualization facility. It is used routinely for geometric modeling applications such as sabot and pene-
trator design, and it provides tools required to generate 3-D geometry and features such as surface materi-
als and textures. Data converters are available to read both IDEAS and Movie-BYU formatted geometry
files into the Advanced Visualizer.

Army Research Laboratory Supercomputer Facility - APG, MD 17-3

Scientific Visualization

The Advanced Visualizer consists of four modules:

Introductory User Guide - May 1993

Model This module builds or imports objects. It provides the tools required to generate 3-D
geometry and to apply materials and textures to the generated surfaces.

Preview The animation module. It is used to produce complicated motion from multiple objects,
cameras, and lights.

Medit This module is used to create and edit materials, textures, colors, atmospheres, lights, and
reflections. This information is passed to Model which creates a library of surfaces with
these characteristics.

Image This module outputs a finished image to a file or output device. Multiple individual files
each contain a single time step of an animation; when viewed sequentially, they provide the
animation of the described object.

17.4.4 Wavefront: Data Visualizer

Wavefront’s Data Visualizer is a 3-D volumetric visualization package. It is useful for animating recorded
or numerically simulated data. It consists of numerous tools which permit the visualization of scalar and
vector fields and any associated meshes. The graphics and user interfaces are separate from the data
server, so remote data (e.g., resident on the Cray X-MP) can be viewed on a local SGI workstation.

Third-party data converters are available to convert files into a format compatible with the Data Visual-
izer. General purpose formats which can be so converted include PlotJD, HDF, AVS, and Movie-BYU.
HULL, AVCO, USA-PG3 and Dyna3D converters have been written locally.

17.4.5 Precision Visuals: PV-Wave

PV-Wave is workstation-based software which permits interactive exploration and visualization of large
datasets. This software is particularly useful for interactive data reduction and filtering, 2-D plotting
(e.g., time series graphs, polar plots, and log/linear charts), 3-D data display (e.g., contouring, hidden line
mesh surfaces, and light source shading), and image analysis and manipulation. PV-Wave is designed
specifically for X-windows output and can be run from image.arl.army.mil (VAX 6320), with graphics
output being sent to any X-window device.

This software can be licensed to run on SGI, Sun, DEC, HP, and IBM workstations, and is available in a
command language interface version and in a window-based point-and-click interface version.

17.4.6 BRL-ShAYD

BRL-ShAYD (Shaded polygons At Your Desk) is a locally developed package for software rendering of
data in the Plot3D format, with the output displayed either on an X-window device or a BRL-CAD
frame buffer. ShAYD consists of four parts:

. A grid and solution server which reads data files from the platform where the computation was
performed.

. A viewing pipeline which renders the grids and solutions as 3-D Gourand shaded polygons.

. A simple command driven user interface which controls the viewing pipeline and data server.

. A MOTIF-based graphical user interface (GUI) which provides a pointrand-click X-window
interface to the command language.

BRL-ShAYD is particularly useful for viewing very large datasets which may be too large for some of the
workstation-based packages. ShAYD permits examination of these datasets by taking “slices” of the data

17-4 Army Research Laboratory Supercomputer Facility - APG, MD

Introductory User Guide - May 1993 Scientific \‘isualization

and displaying only those slices rather than trying to render the entire dataset.

The polygon rendering performed by ShAYD is accomplished in software rather than by relying on specific
workstation hardware. Therefore, users with access to relatively inexpensive X-window-based terminals
and workstations which do not provide graphics capabilities in hardware can use this software package.

17.4.7 New Software

Several new packages whose utility and reliability have not yet been fully defined are available.

SciAn, a public domain scientific visualization and animation program for graphics workstations, is very
promising. It is being developed at Florida State University and the Supercomputer Research Institute,
partially funded by a Department of Energy grant. A beta test version is available on Silicon Graphics
workstations. Currently, SciAn reads only HDF (Hierarchical Data Format) files, but plans for the future
include a distributed file reader with a Plot3D translator.

A software package called n-Title is available to generate animated text on Silicon Graphics workstations.
It uses a graphical user interface to design and mix text charts with high-resolution image files. n-Title is
particularly adept at building title frames, rolling credits, and still text frames, all frequently used in
scientific visualization applications. It has a library of 30 high-resolution fonts which can be customized
by the user, including full control over character fill, outline, and drop shadow. Text can be edited with
3-D bevels, color gradients, texture maps, and transparency. Image files in a number of popular formats
can be imported to the software for use as a background or character fill. Individual n-Title frames can
be sent directly to the Abekas digital video disk for inclusion in a video production.

Army Research Laboratory Supercomputer Facility - APG, MD 17-5

Scientific Visualization

Intentionally Left Blank

Introductory User Guide - May 1993

17-6 Army Research Laboratory Supercomputer Facility - AF’G, MD

Introductory User Guide - May 1993 References

18. References

USA Ballistic Research Laboratory, Advanced Computing Systems. The Ballistic Research Laboratory

CAD Package, Release 4.0, ~01s. l-5. Aberdeen Proving Ground, MD: 1991.

Clocksin, W., and C. Mellish. Programming in Prolog, 3d, rev., and extended ed. Berlin:
Springer-Verlag, 1987.

Cray Research Inc.

Cray Research Inc.

Cray Research Inc.

Cray Research Inc.

Cray Research Inc.
Heights, MN:

Cray Research Inc.
dota Heights,

Cray Research Inc.
MN: 1992.

Cray Research Inc.
MN: 1988.

Cray Research Inc.

Cray Research Inc.
MN: 1990.

Cray Research Inc.
1991.

Cray Research Inc.
Heights, MN:

Cray Research Inc.
MN: 1991.

Cray Research Inc.
MN: 1991.

Cray Research Inc.
Heights, MN:

Cray Research Inc.
Heights, MN:

Cray Research Inc.

UNICOS Primer, SG-2010 6.0. Mendota Heights, MN: 1990.

UNICOS Text Editors Primer, SG-2050. Mendota Heights, MN: 1987.

UNIC0.S Tape Subsystem User’s Guide, SG-2051 6.0. Mendota Heights, MN: 1990.

UNICOS CDBX Debugger User’s Guide, SG-2094 6.0. Mendota Heights, MN: 1990.

CF77 Compiling System, Volume 9: Vectorization Guide, SG-3073 5.0. Mendota
1991.

CF77 Compiling System, Volume 4: Parallel Processing Guide, SG-3074 5.0. Men-
MN: 1991.

Compiler Information File (CIF) Reference Manual, SM-2401 1.0. Mendota Heights,

Interlanguage Programming Conventions Technical Note, SN-3009. Mendota Heights,

UNICOS I/O T ec h nical Note, SN-3075 6.0. Mendota Heights, MN: 1991.

Segment Loader (SEGLDR) and Id R f e erence Manual, SR-0066 6.0. Mendota Heights,

UNICOS User Commands Reference A4anua1, SR-2011 6.0. Mendota Heights, MN:

UNICOS File Formats and Special Files Reference Manual, SR-2014 6.0. Mendota
1991.

UNICOS Performance Utilities Reference Manual, SR-2040 6.0. Mendota Heights,

Cray Standard C Programmer’s Reference Manual, SR-2074 3.0. Mendota Heights,

Volume 1: UNICOS Fortran Library Reference Manual, SR-2079 6.0. Mendota
1991.

Volume 2: UNICOS Standard C Library Reference Manual, SR-2080 6.0. Mendota
1991.

Volume S: UNICOS Math and Scientific Library Reference Manual, SR-2081 6.0.
Mendota Heights, MN: 1991.

Cray Research Inc. UNICOS CDBXSymboiic Debugger Reference Manual, SR-2091 6.1. Mendota
Heights, MN: 1991.

Cray Research Inc. UNICOS X Window System Reference Manual, SR-2101 6.0. Mendota Heights, MN:
1990.

Cray Research Inc. CF77 Compiling System, Volume 1: Fortran Reference Manual, SR-3071 5.0. Men-
dota Heights, MN: 1991.

Cray Research Inc. CF77 Compiling System, Volume ,?: Compiler Message Manual, SR-3072 5.0. Men-
dota Heights, MN: 1991.

Army Research Laboratory Supercomputer Facility - APG, MD 18-1

References Introductory User Guide - hfay 19%

Lloyd, J. W. Foundations of Logic Programming, Sd, extended ed. Berlin: Springer-Verlag, 1987.

Precision Visuals, Inc. PicSure: user’s guide, release 2. Boulder, CO: 1985.

Stern, Nancy. From ENIAC to UNIVAC, An Appraisal of the Eckert-Mauchly Computers. Bedford, MA:
Digital Press, 1981.

18-2 Army Research Laboratory Supercomputer Facility - APG, MD

Introductory User Guide - May 1993

Appendix A

FY93 Charges

Appendix A - FY93 Charges

Army Research Laboratory Supercomputer Facility - APG, MD A-l

Appendix A - FY93 Charges Introductory User Guide - hlay 1993

Intentionally Left Blank

A-2 Army Research Laboratory Supercomputer Facility - APG, MD

Introductory User Guide - May 1993 Appendix A - FY93 Charges

The ARLSCF provides supercomputing time to Government activities and their contractors. In order to
defray operating expenses, the following rate schedule is established for CPU use for fiscal year 1993.
There is no charge for memory use, disk storage, and tape use and storage.

A.1 Hourly Usage

Hourly (pay as you go, monthly billing) customers are charged $350 per effective CPU hour. User-selected
priority categories (see the chapter, “Batch Jobs”) cause actual CPU hours to be weighted as follows to

obtain effective CPU hours.

A.2 Subscriptions

Subscriptions provide a means for significant users to obtain a discount, at the cost of paying in advance.

There are neither refunds nor carryovers for unused portions. User-selected priority categories cause

actual CPU hours to be weighted as in “Hourly Usage ” to obtain effective CPU hours.

Subscription Discounted Rate Effective CPU Hour Allocation

t300K $300 1000

$400K $250 1600

$500K $200 2500

A.3 Dedicated Time

Dedicated time is charged at $350 per wall clock hour (including transition time) times the number of
CPUs on the machine. The user “owns the machine” and priorities are moot, unless the user is running
multiple jobs.

A.4 Billing Questions

Questions about charges, billing, and fund transfers should be referred to the Billing Coordinator listed in
Appendix B.

Army Research Laboratory Supercomputer Facility - APG, MD A-3

Appendix A - FY93 Charges Introductory User Guide - May 1993

Intentionally Left Blank

A-4 Army Research Laboratory Supercomputer Facility - APG, MD

Introductory User Guide - May 1993 -4ppendix B - Points of Contact

Appendix B

Points of Contact

Army Research Laboratory Supercomputer Facility - APG, MD B-l

Appendix B - Points of Contact Introductory User Guide - May 1993

Intentionally Left Blank

B-2 Army Research Laboratory Supercomputer Facility - APG, MD

Introductory User Guide - May 1993 Appendix B - Points of Contact

B.l Requests for Accounts

Users should send their requests for accounts either by electronic mail to crayca@arl.army.mil or by
post to:

Director
U.S. Army Research Laboratory
ATTN: STEAP-LM-AC (Sharon Amerg)
Aberdeen Proving Ground, MD 21005-5067

B.2 Points of Contact

The following is a list of points of contact for various problems or questions that may arise:

Electronic mail forum

Cray System Administrator

Asst. Cray System Administrator

Computer Operators

adm.arl.army.mil System Administrator

Cray Account Administrator

Billing Coordinator

Secure Computer Access Team Leader

Scientific Support Team Leader

craysupport@arl.army.mil problems, questions, discussion

Mr. John Cole
(410)278-9276
sys-admin-xmp@arl.army.mil or
sys-admin-cray2@arl.army.mil

Mr. Mark Williams
(410)278-6664
sys-admin-xmp@arl.army.mil or
sys-admin-cray2@arl.army.mil

operators@arl.army.mil
Cray X-MP/48: (410)278-6829
Cray-2: (410)278-6642

file restorations
and tape mounts

Mr. James Fielding
(410)278-6664
sys-admin-adm@arl.army.mil

Ms. Sharon Amerg
(410)278-6819
crayca@arl.army.mil

new accounts and
clearance verification

Ms. Judy Kelly
(410)278-2820
judy@arl.army.mil

billing and fund
transfer information

Mr. David Towson
(410)278-6271
scat@arl.army.mil

Ms. Denice Brown
(410)278-6269
denice@arl.army.mil

Army Research Laboratory Supercomputer Facility - APG, MD B-3

Appendix B - Points of Contact Introductory User Guide - hlay 1993

UNIX Support Team Leader Ms. Lee Ann Brainard
(410)278-6664
leeann@arl.army.mil

Information System Security Officer
(ISSO)

Ms. Joan Ege
(410)278-6265
ege@arl.army.mil

Asst. ISSO Ms. Shirley Herbert
(410)278-6276
shirl@arl.army.mil

Chief, Computational Support Branch Ms. Linda Baldwin
(410)278-7091
baldwin@arl.army.mil

Chief, High Performance Computing
& Communications Branch

Mr. Robert Cahoon
(410)278-6320
rmc@arl.army.mil

B-4 Army Research Laboratory Supercomputer Facility - APG, MD

Introductory User Guide - May 1993 List of Abbreviations

AHPCRC
AMC
AMSAA
ANSI
APG
ARL
ARLSCF
ARPAnet
AT&T
AVCO
AVS
BLAS
bpi
BRL
BRLESC
BRLLIB
BRLnet
BSD
BSS
BW
CA
CAD
CAL
CDC
CDT
CGM
CPU
CSG
DDN
DEC
DISSPLA
DOD
DSN
DSNETl
EA
EDT
EDVAC
EISPACK
EMA
EOF
EST
FTP
GB
GKS
GUI
HDF
HP
HULL

List of Abbreviations

Army High Performance Computing Research Center
Army Materiel Command
Army Materiel Systems Analysis Activity
American National Standards Institute
Aberdeen Proving Ground
Army Research Laboratory
Army Research Laboratory SuperComputer Facility
Advanced Research Projects Agency network
American Telephone and Telegraph
name of company
Advanced Visual Systems (product name)
Basic Linear Algebra Subroutines
bits per inch
Ballistic Research Laboratory
Ballistic Research Laboratory Electronic Scientific Computer
Ballistic Research Laboratory library
Ballistic Research Laboratory network
Berkeley Software Distribution
a particular kind of memory allocation on Cray computers
Brigham Young University
Computer Associates
Computer Aided Design
Cray Assembly Language
Control Data Corporation
Central Daylight Time
Computer Generated Metafile
Central Processing Unit
Combinatorial Solid Geometry
Defense Data Network
Digital Equipment Corporation
Display Integrated Software System and Plotting LAnguage
Department of Defense
Defense Switched Network
Defense Secure Network 1
extended addressing, a feature of certain Cray computers
Eastern Daylight Time
Electronic Discrete Variable Automatic Computer, an early computer
Eigensystem Package
extended memory addressing, a feature of certain Cray computers
end of file
Eastern Standard Time
File Transfer Protocol
gigabyte
Graphical Kernel System
Graphical User Interface
Hierarchical Data Format
Hewlett Packard
name of computer code; no meaning

Army Research Laboratory Supercomputer Facility - APG, MD Abbreviations-l

List of Abbreviations Introductory User Guide - May 1993

IBM
id
IEEE
IMSL

I/O
IPI
ISSO
Kbyte
LAN
LINDO
LINPACK

MGED
MILnet
MIL-STD
MIT
MPGS
MSC

NASA
NIST

NQS
NSFnet
NTSC
PACX
PC
PVI
RDEC
RGB
SCSI
SGI
SOP
SP
stderr
stdin
stdout
TAC
TCP/IP
VAX
VCR
VTR

International Business Machines
identification, as in “id number”
Institute of Electrical and Electronics Engineers
International Mathematical and Statistical Libraries
input/output
Intelligent Peripheral Interface
Information System Security Officer
kilobyte
local area network
Linear, INteractive, Discrete Optimizer
Fortran subroutine package for solving systems of linear equations
megabyte
Multidevice Graphics EDitor
Military network
Military Standard
Massachusetts Institute of Technology
MultiPurpose Graphics System (Cray software)
MacNeal-Schwendler Corporation
megaword
National Aeronautics and Space Administration
National Institute of Science and Technology
Network Queuing System
National Science Foundation network
National Television Systems Committee
Public Access Computer exchange
IBM’s version of personal computer, or one compatible therewith
Precision Visuals, Inc.
Research, Development, and Engineering Center
red, green, blue
Small Computer Serial Interface
Silicon Graphics, Inc.
Standard Operating Procedure
Standard Play (VHS usage) or Superior Performance (U-matic and Betacam usage)
standard error
standard input
standard output
Terminal Access Controller
Transmission Control Protocol/Internet Protocol
Virtual Address eXtension, a family of DEC computers
Video Cassette Recorder
Video Tape Recorder

Abbreviations-2 Army Research Laboratory Supercomputer Facility - APG, MD

Introductory User Guide - May 1993 Distribution List

No. of
Copies Ornanization

No. of
Copies Organization

2 Administrator
Defense Technical Info Center
ATl-Nz DTIC-DDA
Cameron Station
Alexandria, VA 22304-6145

1

1

1

1

(Ch WlY) 1

(Un-. only) 1

1

2

1

1

1

1

10

Commander
U.S. Army Missile Command
Al-l-N: AMSMI-RD-CS-R (DOC)
Redstone Arsenal, AL 35898-5010

1 Commander
U.S. Army Materiel Command
ATIN: AMCAM
5001 Eisenhower Ave.
Alexandria, VA 22333-0001

Commander
U.S. Army Tank-Automotive Command
ATM: ASQNC-TAC-DIT (Technical

Information Center)
Warren, MI 48397-5000

1 Director
U.S. &my Research Laboratory
ATIN AMSRL-OP-CI-AD,

Tech Publishing
2800 Powder Mill Rd.
Adelphi, MD 20783-l 145

Director
U.S. Army TRADOC Analysis Command
A’ITNz ATRC-WSR
White Sands Missile Range, NM 88002-5502

1 Director
U.S. Army Research Laboratory
A-I-IN: AMSRL-OP-CI-AD.

Records Management
2800 Pow&r Mill Rd.
Adelphi. MD 20783-l 145

Commandant
U.S. Army Field Artillery School
Al-l-N: ATSF-CSI
Ft. Sill, OK 73503-5000

Commandant
U.S. Army Infantry School
AT-I-N: ATSH-CD (Security Mgr.)
Fort Benning, GA 31905-5660

2 Commander
U.S. Army Armament Research,

Development, and Engineering Center
AT-TN: SMCAR-IMI-I
Picatinny Arsenal, NJ 07806-5ooO

Commandant
U.S. Army Infantry School
Al-TN: ATSH-CD-CSO-OR
Fort Benning, GA 31905-5660

2 Commander
U.S. Army Armament Research.

Development, and Engineering Center
Al-l-N: SMCAR-TDC
Picatinny Arsenal, NJ 07806-5ooO

WUMNOI
Eglin AFB, FL 32542-5000

Aberdeen Proving Ground

1 Director
Benet Weapons Laboratory
U.S. Army Armament Research,

Development, and Engineering Center
ATM: SMCAR-CCB-TL
Watervliet, NY 121894050

Dir, USAMSAA
ATTN: AMXSY-D

AMXSY-MP, H. Cohen

Cdr. USATECOM
A’lTNz AMSTE-TC

Dir, ERDEC
A-ITN: SCBRD-RT

(ud mb) 1 Commander
U.S. Army Rock Island Arsenal
A’ITN: SMCRI-IMC-RT/Technical Library
Rock Island, IL 61299-5ooO

Cdr. CBDA
Am AMSCB-CI

1 Director
U.S. Army Aviation Research

and Technology Activity
$E; g YRT-R (Library)

Ames Research Center
Moffett Field, CA 94035-1000

Dir, USARL
A’ITNz AMSRL-SL-I

Dir, USARL
ATIN: AMSRL-OP-CI-B (Tech Lib)

Army Research Laboratory Supercomputer Facility - APG, MD Distribution-l

Distribution List Introductory User Guide - hlay 1993

Intentionally Left Blank

Distribution-2 Army Research Laboratory Supercomputer Facility - APG, MD

USER EVALUATION SHEET/CHANGE OF ADDRESS

This Laboratory undertakes a continuing effort to improve the quality of the reports it publishes. Your
comments/answers to the items/questions below will aid us in our efforts.

1. AFtL Report Number ARC-TR-150 Date of Repon June 1993

2. Date Report Received

3. Does this report satisfy a need? (Comment on purpose, related project, or other area of interest for

which the report wilI be used.)

4. Specifically, how is the report being used? (Information source, design data, procedure, source of

ideas, etc.)

5. Has the information in this report led to any quantitative savings as far as man-hours or dollars saved,

operating costs avoided, or efficiencies achieved, etc? If so, please elaborate.

6. General Comments. What do you think should be changed to improve future reports? (Indicate
changes to organization, technical content, format, etc.)

CURRENT
ADDRESS

Organization

Name

Street or P.O. Box No.

City, State, Zip Code

7. If indicating a Change of Address or Address Correction, please provide the Current or Correct address
above and the Old or Incorrect address below.

OLD
ADDRESS

Organization

Name

Street or P.O. Box No.

City, State, Zip Code

(Remove this sheet, fold as indicated, tape closed, and mail.)
(DO NOT STAPLE)

DEPARTMENT OF THE ARMY

OFRCIAL BUSINESS I BUSINESS REPLY MAIL
FIRST CUSS AWT b 0001, APfi MD

NO POSTAGE
NECESSARY
IF MAILEO

IN THE
UNITED STATES

Poslage ~111 be paid by addressee

Director
U.S. Army Research Laboratory
AlTN: AMSRL-OP-Cl-B (Tech Lib)
Aberdeen Proving Ground, MD 21005-5066

