Army Research Laboratory

Introductory User's Guide to the ARL Supercomputer Facility at APG

Claude J. Lapointe Richard Angelini Lee Ann Brainard Denice Brown John Cole Monte Coleman Phillip Dykstra Carol A. Ellis Gary Kuehl Deborah L. Thompson U.S. ARMY RESEARCH LABORATORY

Kathy A. Burke Jerry A. Clarke COMPUTER SCIENCES CORPORATION

alay is is 1983

ARL-TR-150

June 1993

EE AUG 1996

REFERENCE COPY

DOES NOT CIRCULATE

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION IS UNLIMITED.

NOTICES

Destroy this report when it is no longer needed. DO NOT return it to the originator.

Additional copies of this report may be obtained from the National Technical Information Service, U.S. Department of Commerce, 5285 Port Royal Road, Springfield, VA 22161.

The findings of this report are not to be construed as an official Department of the Army position, unless so designated by other authorized documents.

The use of trade names or manufacturers' names in this report does not constitute indorsement of any commercial product.

REPORT DOCUMENTATION PA	CUMENTATION PAGE
-------------------------	------------------

Form Approved OMB No. 0704-0188

			viewing instructions, searching existing data sources, ding this burden estimate or any other aspect of this information Operations and Reports, 1215 Jefferson
collection of information, including suggestions Davis Highway, Suite 1204, Arlington, VA-22202			
1. AGENCY USE ONLY (Leave blan	and the second secon	3. REPORT TYPE AND Final	
4. TITLE AND SUBTITLE			5. FUNDING NUMBERS
Introductory User's Guide to the	ARL Supercomputer Facility	at APG	PR: 4B592-3B2-H2
6. AUTHOR(S) Claude J. Lapointe, Richard John Cole, Monte Coleman, Pl Deborah L. Thompson, Kathy A	hillip Dykstra, Carol A. E	llis, Gary Kuehl,	
7. PERFORMING ORGANIZATION N	AME(S) AND ADDRESS(ES)		8. PERFORMING ORGANIZATION REPORT NUMBER
U.S. Army Research Laboratory ATTN: AMSRL-CI-AC Aberdeen Proving Ground, MD	21005-5066		
9. SPONSORING / MONITORING AGE	ENCY NAME(S) AND ADDRESS(E	5)	10. SPONSORING / MONITORING AGENCY REPORT NUMBER
U.S. Army Research Laboratory ATTN: AMSRL-OP-CI-B (Tecl Aberdeen Proving Ground, MD	-		ARL-TR-150
11. SUPPLEMENTARY NOTES			
*Kathy A. Burke and Jerry A. Cl Church, VA 22042.	arke are employed by Comput	er Sciences Corporation,	3160 Fairview Park Dr., Falls
12a. DISTRIBUTION / AVAILABILITY	STATEMENT		12b. DISTRIBUTION CODE
Approved for public release; dis	tribution is unlimited.		
	s to provide an introductory u vailable at the U.S. Army Resea	rch Laboratory Supercon	the computers, operating systems, nputer Facility located at Aberdeen
14. SUBJECT TERMS ARL Supercomputer Facility, co	mputer user's guide, computer	r programming, Fortran	15. NUMBER OF PAGES 166 16. PRICE CODE
17. SECURITY CLASSIFICATION	18. SECURITY CLASSIFICATION	19. SECURITY CLASSIFIC	CATION 20. LIMITATION OF ABSTRACT
OF REPORT	OF THIS PAGE	OF ABSTRACT	
UNCLASSIFIED	UNCLASSIFIED	UNCLASSIFIED	UL Standard Form 298 (Bey 2,89)

•

Intentionally Left Blank

.

•

TABLE OF CONTENTS

	Intro	Instian		1-1
1.		TT.	al Overview	1-1
	1.1	Historic	ter Systems and Facilities	1 - 2
	1.2	Comput	ter Systems and Facilities	1 - 2
	1.3	Applica	LIONS SOLWARE.	1-2
	1.4	Eligibili	Ity for User Accounts	$1-2 \\ 1-2$
	1.5	Charges	s and Accounting .	
		1.5.1	ARE MISSION FUNDED and AMO TECH Dase Obers .	1-3
		1.5.2	Subscribers	1 - 3
		1.5.3	Monitoring Costs	1 - 3
		1.5.4	Billing Questions	1 - 3
	1.6		ed Work	1 - 4
	1.7	Schodul	les	1 - 4
	÷	O	ter Security	1 - 4
	1.8	Compu	sibilities	1-4
	1.9	Respons		1 - 5
	1.10	Comput	Lational Support Dranon	1-5
	1.11			
	1.12	Eastern	Time	1-6
2.	ARLS	SCF Con	nputer Access	2-1
	2.1	Request	ting an Account	2 - 1
	2.2	Method	s of Access	2 - 1
		2.2.1	INTERNET Access	2 - 1
		2.2.2	The BRLnet	2 - 2
	2.3	UNICO	S Login Message	2 - 2
	2.4	Logging	g Out	2 - 2
	2.5		F Points of Contact	2 - 3
	2.0	1111100		
3.	UNIC	$\cos - T$	he Operating System	3 - 1
•	3.1	UNICO	S Features	3 - 1
	v.1	3.1.1	On-Line Help	3 - 1
		3.1.2	Shells	3 - 1
		0.1.2	3.1.2.1 Command Syntax	3 - 2
			3.1.2.2 Metacharacters	3 - 2
			3.1.2.3 A Few Useful Commands	3-2
		0 1 0	Network Queuing System	3-3
		3.1.3	Network Queuing System	3 - 3
		3.1.4	File Migration	3-3
	3.2		le System	3-3
		3.2.1	Types of Files	
		3.2.2	Directories and Paths	3 - 4
		3.2.3	File Names	3 - 5
		3.2.4	File Permissions	3 - 6
4.	X11	Window	System	4-1
	4.1	ARLSC	CF X11 Programs	4-1
	4.2		ling X11 Programs	4 - 2
	4.3	ARLSC	CF Fortran Interface to X11	4 - 2
		4.3.1	X11 Menus from Fortran	4 - 2
		4.3.2	X11 Plotting from Fortran	4 - 2
		4.3.3	Sample Fortran Program with X11 Interface	4 - 3
	4.4		terface to PVI	4-6
	1 · I	الالا المالي المالي		

5.	5.1	Manual	Pages	$5-1 \\ 5-1 $
	5.2		monimution Directory	5-2
	5.3	-		5-2
	5.4			5 - 2
	5.5			5-4
		5.5.1		5-4
			Emon on potter and tot to the test of	5 - 5
		5.5.3	Email and File Transfers	5 - 6
6.	File S			6-1
	6.1		inprosoion and 2 coomprosoion i i i i i i i i i i i i i i i i i i	6 - 1
	6.2	File Mig	gration	6 - 1
		6.2.1	Operation of System Initiated Migration	6-1
		6.2.2	Pros of File Migration	6 - 2
		6.2.3	Cons of File Migration	6 - 2
		6.2.4		6 - 2
				6 - 2
	6.3			6-3
	6.4			6-3
	6.5	Archive		6-4
	0.5	6.5.1		6-5
		6.5.1 6.5.2		6-6
	0.0			6-6
	6.6			6-7
	6.7	Васкира	S	0-7
7	E:1. 4	·		7-1
7.				7-1
	7.1		nic Transfers	7 - 1 7 - 1
		7.1.1	ftp	
		7.1.2	rcp	7-2
		7.1.3	kermit	7-3
		7.1.4		7-3
			7.1.4.1 Email Transfers Not Involving ARLSCF Crays	7-3
	-		7.1.4.2 Email Transfers Involving ARLSCF Crays	7-4
	7.2		l Transfers	$7-5 \\ 7-5$
		7.2.1	t3480	
		7.2.2	dd	7-6
		7.2.3	cpio	7-6
		7.2.4	tar	7-6
		7.2.5	ansir	7-7
~	D . 1	T 1		0 1
8.	Batch			8-1
	8.1	NQS .		8-1
		8.1.1	The Queues	8-1
			8.1.1.1 Cray-2 Queues	8-2
			8.1.1.2 Cray X–MP Queues	8 - 2
		8.1.2	Submitting NQS Jobs	8 - 2
			8.1.2.1 Options – Security	8-3
			8.1.2.2 Options	8-3
		8.1.3	Monitoring NQS Jobs	8 - 3
		8.1.4	Restrictions	8-4
	8.2	at, bat	t ch , and cron	8-4
	8.3	Executi	ing in Background	8-4

.

~	m · T	Editors	9 - 1
9.	Text	Editors	9-1
	9.1	Regular Expressions	9-1
	9.2	ed	3-1 9-5
	9.3	sed	9-5 9-6
	9.4	${f tr}$	
	9.5	jove	9-7
	9.6	\mathbf{v}_i	9-10
10.	cf77 (Compiling System	10 - 1
	10.1	cf77: Syntax and Options	10 - 1
	10.2	cf77: Environmental Variables	10 - 3
	10.3	cf77: Default Files	10 - 4
	10.4	eft77 Compiler	10 - 4
	2012	10.4.1 cft77 Syntax and Options	10-4
		10.4.1.1 Arguments for -d and -e, Disable and Enable	10-6
		10.4.1.2 Arguments for -o, Optimization	10 - 6
		10.4.2 cft77: Compiler Directives - CDIR\$	10-7
		10.4.2.1 Output Directives	10-7
		10.4.2.2 Vectorization Directives	10-7
		10.4.2.3 Scalar Optimization Directives	10-8
		10.4.2.4 Storage Directives	10-8
		10.4.2.5 Other Directives	10-8
	10.5	segldr Loader	10-9
	10.5	10.5.1 segldr: Syntax and Options	10-9
		10.5.2 segldr: Loader Directives	10-11
			10 - 12
	10.0	10.5.3 segldr: Environment Variables	10 - 12
	10.6	Some Nondelault Libraries	10 12
	E. t	an I/O	11-1
11.			11 - 1
	11.1		11 - 1
		11.1.1 Formatted/Unformatted	11 - 1
		11.1.2 Sequential/Direct	11-1 11-2
		11.1.3 Records	11-2 11-2
		11.1.4 Multifile Files	
	11.2	Files and Unit Identifiers	
	11.3	The OPEN Statement	11-3
	11.4	The CLOSE Statement	
	11.5		11-5
	11.6	Alternatives to OPEN and CLOSE Statements	11-0
	11.7	Data Transfer	11-1
		11.7.1 READ, WRITE, and PRINT Statements	11-7
		11.7.2 'FORMATTED' and 'UNFORMATTED' I/O	11-7
		11.7.3 List-Directed I/O	
		11.7.4 'SEQUENTIAL' and 'DIRECT' I/O	11-8
		11.7.5 Carriage Control	11-10
		11.7.6 Newline Suppression	11-10
		11.7.7 NAMELIST I/O	
		11.7.8 BUFFER IN and BUFFER OUT Statements	
		11.7.9 READMS and WRITEMS Statements	
	11.8	Improving I/O Performance	
	11.9	Positioning the File	11 - 13
	11.10) File Structures	11 - 13
		Internal Files	11-14

12.	Fortr	an Code	Conversion	12 - 1
	12.1		tandard Fortran Programs	
	12.2		ndard Fortran Programs	
	12.3		Trouble Areas	
			Programs from a COS Environment	
			-	
			5	
		12.3.4	Character Set	
		12.3.6 12.3.6	Tabs	
		12.3.0 12.3.7	Comments	
		12.3.7 12.3.8	D in column 1	
		12.3.8 12.3.9	Names	
			Local Variables: Retention of Value	
			Recursion	
		12.3.12	I/O	
			12.3.12.1 External Files	
			12.3.12.2 Recursion	
			12.3.12.3 List-Directed Output	
			12.3.12.4 NAMELIST I/O	
			Newline Suppression	
			INCLUDE Files	
			The PROGRAM Statement	
		12.3.16	Types	
			12.3.16.1 INTEGER	12 - 7
			12.3.16.2 REAL, DOUBLE PRECISION, COMPLEX,	
			DOUBLE COMPLEX	
			12.3.16.3 CHARACTER	
			12.3.16.4 Boolean Values	
		12.3.17	Type Conversion	12 - 8
		12.3.18	Cogical Expressions	12 - 8
			Relational Expressions	
		12.3.20	IF Statements	12 - 9
		12.3.21	DO Loops	12 - 9
		12.3.22	Array Operations	12 - 9
		12.3.23	Masking, Shifting, and Bit Manipulation	12-10
	12.4	Useful I	Utilities	12-10
		12.4.1	Code Checking	12-10
		12.4.2	TIDYing	12-10
		12.4.3	fsplit	
		12.4.4	flint	
13.	Interl	anguage	Communication	13-1
	13.1		n and C	13 - 1
		13.1.1	Obscure Restriction	13 - 1
		13.1.2	Invoking Subprograms	13 - 2
			13.1.2.1 Names	13 - 2
			13.1.2.2 Arguments	13-3
		13.1.3	Data Types	13 - 3
			13.1.3.1 Correspondence of Types	13 - 3
			13.1.3.2 Fully Compatible	13 - 3
			13.1.3.3 Almost Fully Compatible – Double Precision	13 - 3
			13.1.3.4 Almost Fully Compatible – Pointers	13-4
			$13.1.3.5 \text{Convertible} - \text{Logical Values} \dots \dots \dots \dots \dots \dots \dots \dots \dots $	13-4 13-4
			13.1.3.6 Convertible – Character Values	13-4 13-4
		13.1.4	Arrays	13 - 4 13 - 9
		~~		

		13.1.5	Fortran COMMON and C extern al Variables	13-10
14.	Dehuø	ging Too	ols	14-1
17,	14.1	dbx .		14 - 1
	14.2	cdbx .		14-1
		14.2.1	Syntax and Options	14 - 1
		14.2.2	Commands	14 - 3
	14.3	debug		14 - 6
	14.4	symdu	mp	14 - 6
	14.5	adb .		14-6
	14.6	lint .		14 - 6
	14.7		· · · · · · · · · · · · · · · · · · ·	
15.	Ontin	nizing Cr	ray Programs – Preprocessors	15-1
10.	15.1	Analyzi	ng a Program and Its Performance	15 - 1
	10.1	15.1.1	Analyzing Fortran Source Code – ftref	15 - 1
		15.1.2	Tracing and Timing Programs – Flowtrace	15 - 1
		10.1.2	15.1.2.1 The FLOWMARK Subroutine	15 - 2
			15.1.2.2 The SETPLIMQ Subroutine	15 - 2
		15.1.3	Timing A Program	
		10.1.0	15.1.3.1 Profiling	
			15.1.3.2 time	
		15.1.4	Monitoring Hardware Performance	
		10.1.1	15.1.4.1 Hardware Performance by Program – hpm	15 - 4
			15.1.4.2 Machine Performance by Program Unit – Perftrace	154
	15.2	Vectori	zation - fpp	
	10.2	15.2.1	General Requirements for Vectorization	15-5
		10.2.1	15.2.1.1 Unvectorizable Code	15-6
			15.2.1.2 Vector Dependencies	
			15.2.1.3 Loops Containing IFs	
			15.2.1.4 Vectorizable Expressions and Statements	15-7
		15.2.2	Some Other Considerations	15-7
		10.2.2	15.2.2.1 Vectors	
			15.2.2.2 The Stride	
			15.2.2.3 Memory Contention	
		15.2.3	User Interaction with Vectorization	. 15-8
		10.2.0	15.2.3.1 fpp Options	
			15.2.3.2 fpp Directives	
			15.2.3.3 cft77 Options	
			15.2.3.4 cft77 Directives	
		15.2.4	Another Capability – TIDYing	
	15.3		usking	
	10.0	15.3.1	Macrotasking	
		15.3.2	Microtasking	
		15.3.2	Autotasking $-\mathbf{fmp}$	
		15.3.4	User Interaction with Autotasking	. 15-14
		15.3.5	Some Useful Utilities	. 15-15
		10.0.0		
16.	Annli	ications S	Software	. 16-1
20.	16.1	The IM	ISL Library, Edition 10.0	. 16-1
	16.2		ISL Library, Edition 9.2	
	16.3	LINDO) – Linear, INteractive, Discrete Optimizer	. 16-2
	16.4	PVI Gr	raphics	. 16-2
	10.1	16.4.1	Fortran Callable Subroutines	. 16-3
			16.4.1.1 DI-3000	. 16-3
			16.4.1.2 Grafmaker and Grafeasy	

		16.4.2 16.4.3	16.4.1.3 16.4.1.4 16.4.1.5 PVI Utiliz 16.4.2.1 16.4.2.2 Interactive 16.4.3.1 16.4.3.2	Environmer Compiling : Graphics A PicSure/Plu Using PicSu	nt Varia and Load pplicatio 15 17	 bles . ding P ons . 	 VI Pr 	 	 ns . 	· · · · · · · · · · · · · · · · · · ·	 	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · ·	· · ·	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
			16.4.3.3	Metafile/Co												
		~	16.4.3.4	Using Meta	file/CGN	M Trai	nslato	r	• •	• •	• •	• •	• •	·	• •	. 16-6
	16.5			0 Graphics L												
	16.6	MPGS		0 Graphics L												
	16.7 16.8															
				• • • • • • •												
				ultiple Regre												
	16.15	ABAQU	JS													. 16-12
	16.16	MSC/N	IASTRAN													. 16-12
	16.19	MSC/D	YTRAN		• • •	•••	• •				• •	• •	• •	•	• •	. 16–14
17.	17.1 17.2 17.3 17.4	Introdu Resourd Hardwa Softwar 17.4.1 17.4.2 17.4.3 17.4.4 17.4.5 17.4.6 17.4.7	ction ces re BRL–CAI Wavefront Wavefront Precision BRL–ShA		· · · · · · · · · · · · · · · · · Visualiz · · · · · · · · ·		 	· · · · · · · · · · · · · · · · · · ·	· ·	· · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · ·	· ·	· · · · · · · · · · · · · · · · · ·	· · · ·	· · · · · · · · · · · · · · · · · ·	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
18.	Refer	ences .	••••				•••							•		. 18–1
App	endix A	4 – FY9	3 Charges													. A–1
	A.1	Hourly														
	A.2	Subscri														
	A.3															
	A.4	Billing	Questions		• • •	•••	• •		•••	•••	• •	• •	• •	•	• •	. A-3
Арр	endix I B.1 B.2	Reques	ts for Acco	act unts									· ·	•		. B-3
List																
D1201	LIDUUIO	n Dist			• • • •		• •	• •			• •	•	•			I

LIST OF FIGURES

Figure	2.1	TELNET Access to the ARLSCF Cray X–MP/48	2 - 3
Figure	4.1	Fortran Program Producing X Window Graphical Output	4-4
Figure	5.1	Extract of man jove Output	5 - 1
Figure	5.2	Sample explain Session	5 - 3
Figure	5.3	Sample docview Session	5 - 3
Figure	5.4	Sending a Message to support	5 - 4
Figure	5.5	An Invocation of msg	5-5
Figure	7.1	ftp File Transfer	7-1
Figure	7.2	ftp Help Screen	7 - 2
Figure	7.3	Schuling a message	7 - 4
Figure	7.4	Extracting Files from Tape	7-8
Figure	9.1	Some Regular Expressions with Matching Strings	9 - 2
Figure	9.2	An ed Demonstration	9-3
Figure	9.3	Noninteractive Use of ed	9 - 5
Figure	9.4	Use of sed	9-6
Figure	9.5	jove Commands and Cray Default Bindings	9-8
Figure	9.6	vi Commands	-11
Figure	11.1	I/O with the Four Combinations of FORM and ACCESS Values	1-9
Figure	11.2	NAMELIST I/O	-11
Figure	11.3	BUFFER IN and BUFFER OUT I/O	-12
Figure	12.1	Filter for Removing Suffixed @ Symbols in fpp Output	-12
Figure	13.1	C and Fortran Communication – Logical Values	3 - 5
Figure	13.2	C and Fortran Communication – Character Values	3 - 7
Figure	15.1	Filter for Removing Suffixed @ Symbols in fpp Output	-13

Intentionally left blank

1. Introduction

1.1 Historical Overview

The Army Research Laboratory (ARL) traces its computational history through the Ballistic Research Laboratory (BRL), one of the organizations from which it was formed. The BRL was the home of the world's first electronic digital computer, the ENIAC (Electronic Numerical Integrator and Calculator). The ENIAC, developed from 1943 through 1946 and installed at the BRL in January 1947, was built under contract to assist Army scientists in the calculations of ballistic trajectories, a task that the Army still performs today. Developed at the Moore School of Electrical Engineering of the University of Pennsylvania, the ENIAC contained 19,000 vacuum tubes and 1500 relays, and consumed 200 kilowatts of power. Located in several rooms, the ENIAC was manually programmed by turning 3600 dials and setting numerous switches and plug-in cables. Several weeks of setting up and verification were required for the execution of a major program, a "major program" being the equivalent of 1000 1-address instructions executed on a modern computer.

As a follow-on contract to the ENIAC, the University of Pennsylvania was awarded \$105,600 for research and development of a computer that incorporated a "stored program" design. This contract gave birth to the EDVAC (Electronic Discrete Variable Automatic Computer) and to John von Neumann's influence on computers (Stern 1981). The EDVAC, the world's first stored program computer, contained 1024 48-bit words of core memory and provided paper tape input/output and, later, punch card input/output. During EDVAC's life span, the BRL designed and added floating point hardware.

Subsequent to the EDVAC, the ORDVAC (Ordnance Variable Automatic Computer) was built in 1952 by the University of Illinois. This computer was operational for 12 years at the BRL and incorporated 4096 40-bit words of core memory, a 10,000-word drum, a magnetic tape drive, and punched tape and card input/output.

The ENIAC through ORDVAC computers provided the cornerstones for the BRL-designed and BRL-built BRLESC (BRL Electronic Scientific Computer) I & II. These "high performance" machines were replaced by a commercial mainframe, the last Cyber 7600, which served the Army from the late 1970s to the middle 1980s.

In the 1980s, the BRL embraced UNIX as an operating system and began to provide a distributed minicomputer environment for BRL scientists. This led to the development of the BRLnet, a campus network with numerous, well populated local area networks (LAN). Currently, these LANs are populated with minicomputers, super-minicomputers, and network printing devices. Additionally, the BRL scientific staff developed a large suite of UNIX utilities and tools to provide a robust, user-friendly, and homogeneous computing environment. Many of the tools and computing techniques developed at the BRL continue to serve as models for other computer centers worldwide.

In 1985, the BRL's director, Dr. Robert J. Eichelberger, recognized that the laboratory was ready for the next generation computer. It was Dr. Eichelberger's intent that the BRL have the best computational tools available. Within 2 years, the BRL had procured two Cray supercomputers. In December 1986, the BRL took delivery of a Cray X-MP/48 with a 128-million-word solid-state disk and in July of 1987 took delivery of a 256-million-word Cray-2. The addition of these machines to the existing array of minicomputers, super-minicomputers, and high-resolution work stations established the laboratory as a high performance computing center.

1.2 Computer Systems and Facilities

The Army Research Laboratory SuperComputer Facility (ARLSCF) has two supercomputers, a Cray X-MP/48 and a Cray-2. Dispersed throughout the ARL technical directorates located at Aberdeen Proving Ground is a collection of minicomputers and super-minicomputers, including VAX 11/780s, VAX 6320s, Alliant FX8s, and CONVEX C1s. Additionally, a wide variety of workstations from vendors such as Sun Microsystems, Silicon Graphics, Apollo, and Stellar complement the general purpose processors.

Local access to this equipment is provided via the BRLnet or MILNET, dialup terminals, and local terminals connected to various Gandalf PACX 1000s. Nationwide access is provided through a number of networks.

The Cray-2 has four central processing units (CPUs), each with a 4.1-nanosecond clock, and 256 million 64-bit words of memory. Approximately 60 gigabytes of on-line, classified mass storage is available. A Cray Tape Controller, which provides IBM 3480 magnetic tape capability, and a Masstor M860 robotic storage device provide for off-line mass storage. The Cray-2, which runs strictly in a classified mode, is connected to the DSNET1 and various remote enclaves.

The Cray X-MP/48 has four CPUs, each with an 8.5-nanosecond clock, and approximately 40 gigabytes of unclassified mass storage. A 128-million-word solid-state disk is configured to use ldcache and as a primary swap device, thus making this resource available to all processes.

Both supercomputers run under UNICOS 6.1 and implement the Cray Data Migration procedures. Batch procedures are controlled by the network queuing system (NQS). A wide variety of output devices is available.

1.3 Applications Software

The ARLSCF software application codes and libraries are maintained by members of the ARLSCF staff. Brief descriptions of such software are contained in the chapter, "Applications Software." On-line assistance is provided via the **man** or **docview** commands. Requests for information or assistance should be sent by electronic mail to **craysupport@arl.army.mil**. Craysupport is an electronic mailbox read by numerous individuals, including scientists and hardware/software support personnel, and its use is encouraged for the exchange of questions, answers, and information.

1.4 Eligibility for User Accounts

Army organizations, other DoD organizations, and other Government organizations may use the ARLSCF. Contractors working for any of these organizations may use the computer facility; however, the sponsoring Government organization remains responsible for funding and management of the computer account.

Procedures for requesting accounts are contained in the chapter, "ARLSCF Computer Access."

1.5 Charges and Accounting

The charges for computing on the Crays at the ARLSCF are calculated solely on the amount of CPU time used, the priority category of the job, and the user's funding category. The charges are subject to annual review. The three priority categories are Normal, Express, and Deferred. The three funding categories are ARL mission funded and AMC Tech Base, Subscriptions, and Hourly. ARL and AMC computing that is neither mission funded nor Tech Base is charged as Subscription or Hourly. Jobs submitted through NQS are in the Normal category unless they have been submitted explicitly to either the Express or Deferred queues. Interactive jobs run within the Normal category unless a user has specifically requested the Express or Deferred categories by use of the appropriate argument to the -n parameter of the /usr/brl/bin/lim command.

Specially scheduled dedicated sessions incur an additional charge for the transition into and out of the dedicated mode. The dedicated session is billed per wall clock hour including this transition time, and reflects the use of all CPUs on the machine.

See Appendix A for the current rate structure.

1.5.1 ARL Mission Funded and AMC Tech Base Users

The ARL and the various Army Research, Development and Engineering Centers (RDECs) comprising the Army Materiel Command (AMC) Technology Base have provided funding for the ARLSCF from their 6.1/6.2/6.3a funding categories. Users from these organizations working on projects funded similarly are not charged a dollar rate for their computing. Instead, each organization is allocated a certain number of hours of computing based on their share of the funds contributed. Jobs in the Normal category are charged the number of hours used; in the Express category, twice that much; and in the Deferred category, half that much. Dedicated sessions are charged quadruple the number of hours used, because all four CPUs are dedicated, including transition time. AMC Tech Base organizations whose users overspend the organization's allocation will be charged for the additional time at prevailing rates. See Appendix A for the current rate structure.

1.5.2 Subscriptions

Organizations which are neither ARL mission funded nor part of the AMC Technology Base but which anticipate high usage during the fiscal year may request a subscription to the ARLSCF. A subscription, which can be purchased for \$300,000, \$400,000, or \$500,000, allocates to the subscriber a certain number of hours at a reduced rate. Jobs from subscribing organizations are charged against the allocation as if they were from AMC Tech Base organizations. Subscribing organizations whose users overspend the organization's allocation will be charged for the additional time at the subscription rate. There are no refunds or carryovers for a subscribing organization which underspends its allocation. See Appendix A for the current rate structure.

1.5.3 Monitoring Costs

The charges command is available on the Crays to enable users to keep track of their monthly or fiscal year usage. It reports the exact number of hours incurred in each priority category and in dedicated mode. The command **man charges** on either machine describes the various options. To determine his cumulative bill, an hourly customer multiplies the number of hours in each category by the hourly charging rate for that category and adds the results. Similarly, ARL mission funded, AMC Technology Base, and subscription customers multiply the number of hours in each category by the charging weight for that category, and add the results to get the cumulative number of hours decremented from their initial allocation.

1.5.4 Billing Questions

Questions regarding the charges and billing should be referred to the Billing Coordinator listed in Appendix B.

1.6 Classified Work

The ARLSCF operates the Cray-2 continually in a system high, periods processing mode. Access to the classified Cray-2 is via DSNET1, ARL (Aberdeen site) Secure Enclaves, and STUIII dialup. Individuals desiring this service should contact either the Secure Computer Access Team or the Information System Security Officer (ISSO) listed in Appendix B.

1.7 Schedules

For both Crays, a schedule of the normal operating times and scheduled deviations, and a history of unexpected down time due to power outages, machine crashes, etc., is kept in the file /usr/pub/notd on both Crays and on many minicomputers within the ARLSCF. Users interested in this information can display this file using the UNIX cat, pg, or more commands. In addition, on the Cray X-MP/48, the command news notd displays the current schedule.

1.8 Computer Security

Computer security at the ARLSCF is a serious and constant issue. The ARLSCF staff is vigilant in protecting against fraud, waste, abuse, and, in particular, unauthorized access. Users share in the responsibility for protecting these resources; failing to act responsibly will jeopardize a user's access to the ARLSCF. Some practices important to computer security are:

- Never write passwords where they can be seen by others commit them to memory. Do not post passwords on terminals. Do not program passwords into terminals' function keys.
- Do not, under any circumstances, enter passwords into any file. In particular, the **qsub** command's -u option permits a password to be supplied as part of an NQS job. Do not use this option to provide a password.
- Do not share passwords and do not give them to others. If more than one person needs access to a specific project, the ARLSCF staff will establish multiple user accounts for that project.
- Do not include passwords in electronic mail messages.
- Do not leave terminals unattended and logged in.
- Report immediately any seeming discrepancy between reported computer usage (see the preceding section, "Monitoring Costs") and expected computer usage. Better to cry "wolf" and be wrong than to let an unauthorized user slip away.
- Report immediately any unrequested/unexplainable output, hard copy or on the terminal.
- Report immediately any moved, deleted, or altered files.
- Report immediately any strange, duplicate, or lost electronic mail.
- Report immediately any suspected security problem to the system administrator or the ARLSCF ISSO.

1.9 Responsibilities

The computing assets of the ARLSCF are precious resources, and the privilege of accessing them carries with it certain responsibilities. The ARLSCF staff is responsible for maintaining and operating the various

computer resources. Users share in the responsibility for maintaining and operating this facility and are responsible specifically for:

- Reading and complying with the various guidelines and standard operating procedures (SOPs).
- Monitoring computer usage to prevent waste and fraud.
- Notifying the ARLSCF immediately of any change in a user's status.
- Ensuring that passwords are not compromised, that equipment is always physically secure, and that access to equipment is always controlled.
- Using the ARLSCF resources for official business only.
- Creating backup files for their own important work.
- Reading system bulletins to keep current with changes to the system (news news tells how).
- Arranging for the disposition of tape, disk, and tape cartridge files upon termination of an account.
- Limiting one's concurrent NQS jobs to two per queue.
- Limiting one's interactive jobs so as not to hog the system.
- Removing or archiving unneeded files.
- Limiting the size of files/messages mailed from the supercomputers.
- Giving permissions only to the owner for the . (dot) files in one's user space.

1.10 Computational Support Branch

The Computational Support Branch handles all output, maintains the reference and tape storage libraries, handles tape processing and file restoration, and provides users with necessary documentation. Questions of a general nature or to ascertain the responsible individual should be directed to the Chief (see Appendix B for names).

1.11 User Services

The ARLSCF Scientific Support Team serves as the User Services/Help Center group. The team is dedicated to helping users utilize the ARLSCF facilities to their fullest extent. The ARLSCF staff coordinates training, provides in-house training, consults with users on any problems they may encounter, and assists in porting codes to the supercomputers.

In addition to those people listed in Appendix B, support is obtained from the entire ARL technical community. Questions concerning procedures, implementation issues, and virtually any question relating to high performance computing should be addressed electronically to **craysupport@arl.army.mil**.

Electronic mail is the preferred means of communication within the ARL. The craysupport mail list is monitored by members of the ARLSCF staff responsible for operations, members of the on-site Cray Research Inc. staff, and numerous members of the ARL scientific research staff. Any user desiring to become a craysupport recipient may request to be included on the mailing list. Please send your request to support-request@arl.army.mil.

The ARLSCF staff communicates hardware and software changes, explanations for extended down time, training class and seminar announcements, and other matters to the user community through the info-cray mail list. This mail list includes everyone receiving craysupport mail plus others who only want to receive informative messages about the Cray. Users desiring to be on this mail list but not on craysupport should send their request to info-cray-request@arl.army.mil.

1.12 Eastern Time

The ARLSCF uses Eastern Time, either Eastern Standard Time or Eastern Daylight Time.

2. ARLSCF Computer Access

The Army Research Laboratory SuperComputer Facility (ARLSCF) is located at Aberdeen Proving Ground, MD. It provides services to Army scientists and engineers on site and around the country. Access to the ARLSCF computers, for most users, usually involves a connection via a computer network or telephone line. This chapter describes the procedures to request accounts on ARLSCF computers, and to connect with and log into and out of them.

2.1 Requesting an Account

Persons who are employees of Government agencies, civilian contractors working for Government agencies, or employees of firms which are working under Government contracts may request accounts on ARLSCF computers. For Cray-2 accounts, a security clearance is required. To apply for accounts, send a written or electronic mail request to the appropriate address listed in Appendix B. The request should specify the names of all persons desiring accounts, their phone numbers, agency addresses, supervisors, and the computers to which access is desired (including ARLSCF front end machines, if necessary). Account request and security clearance forms, as appropriate, will be sent to each individual upon receipt of requests. User id's, accounting classification numbers, and dialup phone numbers are issued upon receipt and approval of these forms. This procedure normally takes about 1 week to complete, and is necessary to ensure that the ARLSCF abides by the U. S. Government policy regarding access to supercomputers. Supervisors of ARL or Army Materiel Systems Analysis Activity (AMSAA) employees may contact the Cray Account Administrator in person to establish accounts for them.

2.2 Methods of Access

The ARLSCF computers are accessible through the INTERNET (including MILnet, ARPAnet, and NSFnet), through other computers on the ARL-APG site LAN (BRLnet), or through the classified network. A direct dialup phone connection cannot be used directly to access the supercomputers; however, such connections can be established to a minicomputer on the BRLnet.

2.2.1 INTERNET Access

The INTERNET is a collection of networks including the NSFnet, the ARPAnet, and the MILnet (among others), all three of which use the TCP/IP communications protocol. These three networks are managed and supported by the DoD and constitute the Defense Data Network (DDN).

Users with INTERNET connectivity and running TCP/IP software may access the ARLSCF computers by invoking the TELNET utility:

telnet internet_target_host_name

or

telnet internet_target_numerical_address

Upon establishing a connection, the user receives a login prompt.

Users with TAC (Terminal Access Controller) access may use the TAC to access the ARLSCF computers. Once a connection to the TAC has been established, it may be necessary to enter **CTRL-Q** to wake up the TAC. At that point, enter

@o[pen] internet_target_numerical_address

The TAC will then prompt for and verify the user's TAC id and access code before connecting to the target machine. After logging out of the target machine, the user will be returned to the TAC. Enter

> @c[lose] @l[ogout]

to close the connection (may not be necessary) and log out of the TAC. On most TACs it is possible to reach the DDN Network Information Center by entering

@n[ews]

The INTERNET names and addresses of the Cray X-MP/48 and of a front end computer are:

Cray X-MP/48patton.arl.army.mil128.63.23.5 or192.5.21.20Gould 9080adm.arl.army.mil192.5.25.4 or192.5.21.30

The Cray-2 is on the DSNET1, a classified network, rather than the INTERNET. Connections can be made in a similar manner, but neither the names nor addresses can be provided because they are classified. Off-site Cray-2 users who need assistance in establishing their connection mode to the machine can contact the Secure Computer Access Team (scat@arl.army.mil) for help.

2.2.2 The BRLnet

The ARL-APG LAN (BRLnet) provides direct access to both Cray supercomputers through front end machines. The BRLnet is available to users with modems via several dialup phone lines (300, 900, 1200, 2400, 4800, and 9600 baud), and to users with direct connections to computers on the BRLnet. The dialup numbers and the baud rates for each will be released to the user once an account has been approved.

There are two methods by which ARLSCF computers may be accessed from the BRLnet. The first is through use of the rlogin utility (e.g., rlogin patton.arl.army.mil for the Cray X-MP/48). The second is by way of the TELNET utility, as described in the preceding section, "INTERNET Access."

2.3 UNICOS Login Message

ARLSCF computers operate under UNIX, or variants thereof (e.g., UNICOS). Once a connection has been established, the user receives a warning regarding unauthorized access and then the **login:** prompt. The proper response is to enter the assigned username followed by a carriage return, after which the **Password:** prompt is issued. The user responds with the password followed by a carriage return. Once login has been completed, the system displays the date and time of the last login followed by the message of the day, a short bulletin containing system information of which the user should be aware during the login session.

2.4 Logging Out

To log out of an ARLSCF computer, enter a **CTRL-D** as the first character on a line or enter the command **logout**. If the ARLSCF computer has been accessed from another computer, the user is returned to that computer and should follow the normal procedure for logging out of that computer. If the connection has been made through the TAC, then the user is returned to the TAC and should follow the normal procedure for logging out of the TAC, as described in the preceding section, "INTERNET Access."

Figure 2.1 displays a sample login session demonstrating access to the ARLSCF Cray X-MP/48 via the TELNET utility using the INTERNET numerical address. Actual keyboard entries are emboldened, \bullet indicates a RETURN, and \uparrow indicates a CTRL-.

```
% telnet 128.63.23.5•
Trying 128.63.23.5...
Connected to 128.63.23.5.
Escape character is '^ '.
Cray UNICOS (patton) (ttyp011)
    Unauthorized users of this computer are subject to prosecution.
login: user_name•
Password: user enters password, not echoed to screen.
Last successful login was : Fri Nov 6 09:00:01 from adm.arl.army.mil
       Running UNICOS 6.1. Report any problems to craysupport@arl.army.mil*
       Use news to get info about the system. "news news" tells how.
       Any unread news items are denoted by "news: filename" upon login.
news: notd cos change_passwd gc schedule at-batch-cron deferred.q nqs.queues
 abaques ngs.policy disspla.imagen restorations tmpdir express.que 6.1upgrade
 arlscf_policy news flint sysadmin
patton> date.
Fri Nov 6 10:30:15 EST 1992
patton> ^DConnection closed by foreign host.
%
```

Figure 2.1. TELNET Access to the ARLSCF Cray X-MP/48

2.5 ARLSCF Points of Contact

See Appendix B for the current list of points of contact for various problems or questions that may arise regarding the ARLSCF.

ARLSCF Computer Access

Intentionally Left Blank

.

3. UNICOS – The Operating System

This chapter applies specifically to the ARLSCF Cray computers; however, to the considerable degree that UNICOS is similar to AT&T System V UNIX or BSD UNIX version 4.2, the information presented applies also to the various other computers at ARLSCF.

3.1 UNICOS Features

UNICOS is the UNIX-based[†] operating system running on the Cray X-MP and the Cray-2 supercomputers at the ARLSCF. It consists of the core operating system, an extensive set of utilities, and several command line interpreters, known as shells. The flexibility and portability of the UNIX operating system make it an ideal choice for supercomputer operations. The Cray enhancements incorporated in UNICOS are largely in these areas:

- File system improvements to provide supercomputer class I/O performance.
- Support for multiple processors and multitasking.
- Additional debugging aids.
- System accounting features.
- Additional batch processing capabilities.
- Increased CPU time and memory size limits.

3.1.1 On-Line Help

UNICOS provides an on-line help facility. Executing **man** command_name displays the command's reference manual pages on the screen. For example, **man** man provides detailed information on the operation of the **man** command. Additional information may be found in the chapter, "On-line Information."

3.1.2 Shells

A shell is a user's interface to the UNICOS operating system. As commands are entered, the user's shell interprets the line and relays the information to the operating system for processing. A command programming language is provided, and executable files, known as shell scripts, can be produced. Shell scripts are used to group shell commands so they may be executed conveniently and repeatedly. UNICOS supports the C shell, /bin/csh, the Bourne shell, /bin/sh, and the Korn shell, /bin/ksh. Users are not limited to these three shells because UNICOS permits implementation of others. Two of ARLSCF's own shells, the TC shell, /usr/brl/bin/tcsh, and the TB shell, /usr/brl/bin/tbsh, are available to users.

AT&T System V UNIX with BSD enhancements and Cray enhancements.

All five of these shells are similar, but each has its own unique capabilities and features. Users, initially assigned the Bourne shell, may change their shell as desired by executing **chsh** full_path_name_of_desired_shell.

3.1.2.1 Command Syntax

In general, shell commands follow a common syntax:

command_name [-option [argument] [-option [argument] ...]] operands

The command and its arguments are separated by spaces. Each command line is terminated by a return.

Most commands allow certain minor abbreviations in syntax (e.g., multiple options without arguments concatenated into one string prefixed with a single hyphen), and certain commands do not strictly follow it. Detailed information about any command may be obtained on-line by executing **man** command_name.

3.1.2.2 Metacharacters

Metacharacters are keyboard characters which have special meaning to UNICOS, to the user's shell, or to a UNICOS program. The UNICOS metacharacters, whose meanings may be context dependent, and for which complete descriptions may be obtained by executing **man sh**, are:

In addition, many UNICOS programs (in particular, editors) recognize their own metacharacters, usually having considerable overlap with the UNICOS metacharacters. For detailed information on such programs, execute **man** command_name.

3.1.2.3 A Few Useful Commands

UNICOS provides a large suite of utilities for creating, deleting, inquiring about, and otherwise manipulating files. A few of the more basic ones, to get the complete novice started, follow. These commands accept a number of options, arguments, and operands, for which detailed information may be obtained by executing man command.

cat files [>[>]] other_file] Concatenate files into other_file, which is created or overwritten $(>)$, or created or appended to $(>>)$. files is a blank-separated list of file names. Without other_file, the concatenation is to standard out.
cd [name]	From the current directory, move into directory <i>name</i> ; <i>name</i> must provide sufficient identifying information. With no argument, return to the user's home directory.
cp file1 file2	Copy file1 onto file2, overwriting any existing file2.
diff file1 file2	Perform a line by line comparison of <i>file1</i> and <i>file2</i> , displaying differences at the terminal. diff <i>file1 file2</i> > <i>file3</i> redirects the results into <i>file3</i> .
jove file	Enter jove , a popular and well supported screen editor at ARLSCF, creating a copy of <i>file</i> as the work file. Additional information may be found in the chapter, "Text Editors."
ls –al	List in long form (-1) all $(-a)$ files in the current (sub)directory.
mkdir name	Create a new sudbirectory, name.
mv file1 file2	Move (actually rename, subject to certain conditions) file1 to file2, destroying any existing file2.
pwd	Display the complete name of the current (i.e., present working) directory.

rm files Remove all files in the blank-separated list of files. Be exceptionally careful of any variant of this command using metacharacters, to avoid removing more files than is intended.

rmdir name Remove the empty subdirectory name.

3.1.3 Network Queuing System

The NQS is the only way to submit Cray jobs requesting more than 10 minutes execution time. In addition, NQS submissions are advantageous even for shorter jobs because

- NQS jobs lend themselves to management by ARLSCF staff, alleviating certain problems which can occur when too many jobs request too much memory.
- NQS jobs do not retain control of the user's shell/terminal after submission.
- NQS jobs are automatically checkpointed before intentional system shutdowns, thus allowing recovery when the machine returns.

Additional information may be found in the chapter, "Batch Jobs."

3.1.4 File Migration

Disk space on the ARLSCF Crays, although large, is limited. File migration is a system process whereby larger, less often used disk files are automatically, and more or less transparently to the user, transferred to tape storage. Additional information may be found in the chapter, "File Storage – On- and Off-Line."

3.2 The File System

The general characteristics of the UNICOS file system are typical of many UNIX systems. It is a hierarchical tree structure consisting of several types of files. Individual files may contain text, data, or binary information. The files are grouped into manageably sized file (sub)systems to optimize disk space and to provide effective I/O throughput. Each user's set of files is organized as a branch of the tree, whereon each one of that user's files and subdirectories is a leaf or a sub-branch. To create, delete, modify, or execute files, a user must have the appropriate access permissions to those files. Information about permissions may be obtained by executing **man chmod** and **man ls**.

3.2.1 Types of Files

The UNICOS file system incorporates several different types of files, of which the following are the more likely to be of interest to typical users:

- regular The typical user file, containing text, data, source code (a form of text), object code, and executable programs.
- directory A file containing information which enables the operating system to access other files (which may include other directories) within the directory, and to return to the directory's parent. (A file's or directory's parent is the branch from which it sprouts.)
- migrated A regular file which, due to demands for disk space, has been "migrated" to off-line storage. Only the name of the file and information sufficient to retrieve it in a more or less transparent way remains on-line.

UNICOS - The Operating System

special Typically, a file containing information enabling the operating system to deal with devices used for input and output. The file actually represents the device. On other UNIX systems, certain of these files are directly addressed by users; for example, to read a "tar" tape, a user might execute tar /dev/rmt0, /dev/rmt0 being a special file representing a tape drive. Under UNICOS, however, other methods are used (see the tar paragraph in the chapter, "File Transfers," and users have little need to explicitly name special files. The special file /dev/null is a notable exception. Output redirected to /dev/null (>/dev/null) on UNICOS and other UNIX systems is effectively suppressed.

3.2.2 Directories and Paths

From the operating system's perspective, a directory is a file containing information which enables it to access other files (which may include other directories) within the directory, and to return to the directory's parent. From a user's perspective, a directory is a hierarchical structure of files and (sub)directories. A user's file structure begins with the user's home directory, into which he is placed upon logging in, and in which he may create as many files and nested or unnested (sub)directories as desired, in a tree structure which extends as broadly and as deeply as desired.

The origin of the entire UNICOS file system is the "root" directory, with complete name "/". Some few of the topmost levels in root are:

1	root; the directory containing everything
/bin	directory containing user-oriented commands
/bin/cat	the cat command
$/{ m bin}/{ m ls}$	the ls command, AT&T System V style
/etc	directory containing data and commands related to system administration
/usr	directory containing system files and directories
/usr/bin	directory containing user-oriented commands
/usr/ucb	directory containing user-oriented commands from University of California at Berkeley
/usr/ucb/ls	the ls command, Berkeley style
/usr/brl/bin	directory containing user-oriented commands developed at the then USABRL
/usr/local/bin	directory containing user-oriented commands not part of the normal UNICOS distri- bution and of somewhat specialized interest; often proprietary
/dev	directory containing special files for I/O devices
/lib	directory containing system libraries
,	

/organization_name directory containing home directories of that organization's employees

This brief list raises questions about navigating within and across directories, and accessing specific files. The names listed above are, in every case, full path names — that is, they specify, unambiguously and absolutely (i.e., with respect to root, the origin of the entire file system), the location in the file system tree of the named file.

A user can reference a file in two completely different ways: as a command to be executed (e.g., the **cat** in **cat** file), or as an operand (e.g., the file in **cat** file).

First, we discuss files as operands. A file name (e.g., **mydata**, **mypgm.f**, or **a.out**) is a relative path name referencing a file of that name in (relative to) the current directory. A file name prefixed by one or more subdirectory names (e.g., **pressure/oct91** or **temperature/internal/jan92**) but not with an initial slash, is a relative path name referencing a file whose name is the last component in the string, and which is to be found by descending the directory hierarchy as indicated by the successive component

names, starting in the current directory. Note that the components of the path are always separated by single slashes. A prefix of "./" on a relative path name is equivalent to prefixing it with the current directory name, which is merely redundant in this discussion, but will not be later. A prefix of "../" on a relative path name is the logical equivalent of prefixing it with the parent of the current directory. A ".." appearing as an intermediate component in a relative path name is the logical equivalent of the name of the parent of the directory immediately before the "..". Note that these two effects of "..." cannot be duplicated with actual path names because "..." is the only symbol which causes the path to travel back up the directory tree. Starting at root is not the equivalent because it forces initiation at the origin, not travel in the reverse direction.

Now consider file names used as commands, e.g., ls to obtain a list of file names in the current directory. Everything stated concerning file names used as operands applies here, and more. Rarely is a user's current directory the directory which contains a UNICOS command such as ls. Hence, a user almost always would be required to enter a full path name (e.g., /bin/ls or /usr/ucb/ls) for a command, but for the PATH variable. Each user has a PATH variable, which is assigned a default value when the user is first granted an account. Users may change their own PATH variable definitions to suit their own needs. The techniques for setting the variable and the considerations involved in choosing its value are beyond the scope of this short discussion. Users unfamiliar with the significance of alterations to their PATHs are urged to seek competent advice before attempting alterations.

A user's **PATH** contains a colon-separated list of full path names to the directories within which are found the commands of which that user makes use. The names are in a particular order. When a user issues a command by entering its name without explicit path information, UNICOS does not expect to find that command in the current directory. Rather, UNICOS searches all the directories whose full path names are in the user's **PATH** variable, in the order in which they occur, until an executable file whose name matches the command name is found. That file is the command which is executed. Thus, for example, by incorporating /bin, or /usr/ucb, or both in the desired order, in their **PATH**s, users may control which **ls** command is executed when they enter **ls** as a command. The "other" **ls** still may be selected by entering its full path name as a command when desired. A user might even have his own tailor made version of **ls** in one of his own directories (typically named .utility or .bin) and name that directory early in his **PATH**. Whenever a command name is entered with explicit full or relative path name information, **PATH** is not used for the search; rather, the rules for finding a file named as an operand are followed. The usefulness of "./" as a command name prefix (merely redundant as an operand name prefix) is that, when a command is so prefixed, it has explicit path information. Thus, ./file means execute file found in the current directory, rather than file found by searching the **PATH**.

The different performance provided by different commands with the same names (e.g., /bin/ls versus /usr/ucb/ls) can be surprising to inexperienced users. Sometimes it can be frustrating. Consider the rsh command. /usr/ucb/rsh opens a shell on a remote machine. It permits a user logged in to an ARLSCF Cray to execute a command on some remote machine networked with the Cray. /bin/rsh, however, opens a restricted shell on the Cray. A user who expects to execute /usr/ucb/rsh when he types rsh, but instead executes /bin/rsh, is likely to become frustrated unless he understands the selection mechanism. For the convenience of users who give priority to /bin over /usr/ucb in their PATHs, UNICOS provides /usr/ucb/remsh, a synonym for /usr/ucb/rsh. remsh cannot result in executing /bin/rsh, regardless of a user's PATH.

3.2.3 File Names

UNICOS file names may contain up to 14 characters and consist of letters, numbers, periods, underscores, and other printable and unprintable characters. Upper and lower case letters are different characters. It is most strongly emphasized that users ought to limit their files' names to those consisting only of letters, numbers, periods, and underscores. To use characters in addition to these is to court unexpected, and sometimes disastrous, behavior. By convention, certain file name suffixes have special meanings under UNICOS. Various UNIX systems require various ones of these suffixes for various commands. For example, cft77 accepts but does not require the .f suffix whereas cf77 requires it.

- .a file contains an object code library
- .c file contains C source code
- .f file contains Fortran source code
- .F file contains Fortran source code to be preprocessed by gpp under cf77
- .h file contains C source code header information
- .l file contains listing output from a compiler or assembler
- .o file contains object code
- .p file contains Pascal source code
- .s file contains assembler source code
- .z file has been packed; unpack will return it to its original condition
- .Z file has been compressed; uncompress will return it to its original condition

3.2.4 File Permissions

Each file (including directories) has associated permissions which control access to the file. A file inherits its set of permissions from its owner when the file is created. The owner may change the permissions of existing files (chmod), or change the permissions which all his files acquire automatically upon creation (umask). When a user is initially granted an account, the "automatically acquired upon file creation" permission set is defined so that no one other than that user has any access to his files. Current policy at ARLSCF is that users who increase the accessibility of their files assume responsibility for any security violations which occur due to that increased accessibility. Be aware that ARLSCF computers are linked to international networks and that there have been attempts to gain unauthorized access.

ls - l displays, among other things, the permissions associated with files. For example, ls - l file might yield

-rwx----- (other information) file

Permissions on a directory have a somewhat different interpretation. To have write permission to a directory is to be able to modify the directory file itself — that is, to be able to create and remove files within the directory. To be able to manipulate files conveniently, a user needs both read and execute permission on his parent directory. Read permission without execute permission on a directory allows a user to do nothing more than obtain the names of the files therein. Execute permission without read permission on a directory allows a user to do everything he could do with both, except obtain the names of the files therein. Therefore, without read permission, the user must have independent knowledge of the file names in order to access the file.

4. X11 Window System

Various computers at the ARLSCF, including both Crays, provide version 11 of the X Window System, henceforth referenced as X11.

X11 programs and libraries provided by Cray Research, Inc. are in /usr/bin/X11 and /usr/lib, respectively. Detailed information may be found in the Cray publication, UNICOS X Window System Reference Manual, SR-2101 6.0. There are X11 interfaces to the Cray debugger, cdbx (discussed in the Cray publications, UNICOS CDBX Debugger User's Guide, SG-2094 6.0, and UNICOS CDBX Symbolic Debugger Reference Manual, SR-2091 6.1) and to the Cray performance utilities atexpert, atscope, flowview, perfview, and profview (discussed in the Cray publication, UNICOS Performance Utilities Reference Manual, SR-2040 6.0).

X11 programs and libraries from other sources are in /usr/X11/bin and /usr/X11/lib, respectively.

4.1 ARLSCF X11 Programs

Some of the X11 programs available at the ARLSCF are listed below. Additional information may be found in the **man** pages. Depending on a user's environment, it may be necessary to augment the **man** command with the argument -M /usr/X11/man or to add :/usr/X11/man to the environmental variable, **MANPATH**. All these programs open windows via **xterm**. The mail- and news-related programs are not available on the Crays.

xchoose	provides a menu capability for shell scripts. Accepts the menu items as command line arguments, or as lines from standard input, and writes to standard output the menu item selected. Usage: CHOICE=`ls xchoose`.
xdu	displays graphically the output of du . Usage: du xdu .
xftp	X11 version of ftp.
xmsg	reads electronic mail of the form used at the ARLSCF, and is patterned after msg and xrn , with certain extensions. Opens multiple windows to read, send, answer, and forward mail. The default mail file is \$HOME/mailbox .
xod	displays binary files created on various machines. There is a menu selection of the creating machine (Convex, Cray, IBM, IEEE, Vax) and of the desired display conversion.
xrcvalert	mail receipt notification program whose invocation is specified in the user's .maildelivery file. When mail is received, the mail system invokes xrcvalert , which prints a line in the root window screen and sounds a bell.
xrn	the X11 counterpart of rn .
xrgbsel	displays on a color X display those colors which can be specified by name in an X program. It reads file $/usr/X11/lib/X11/rgb.txt$ to obtain color names and mixes.
xtw	displays a directory tree. The current directory's ancestry is shown as a trunk to its left, and its descendants expand into a tree to the right. The tree may be walked with a mouse, and the display expands or contracts as appropriate.
xuptime	prints the time, the length of time the system has been up, the number of users logged in, and the average number of jobs in the run queue over the last 1, 5, and 15 minutes, and plots a graph of the CPU load verses time. Usage: uptime xuptime .

4.2 Compiling X11 Programs

X11 C programmers are strongly encouraged to create an **Imakefile** and use command **xmkmf** to to generate a **makefile** with the proper definitions for a given computer. If the **makefile** is created manually, it is likely that the arguments $-DX_NOT_POSIX$ and $-DX_NOT_STDC_ENV$ will be needed on the **cc** command line.

4.3 ARLSCF Fortran Interface to X11

/usr/X11/lib/libXf77.a is the ARLSCF Fortran X11 library. It contains subroutines of two kinds, one kind to provide a menu capability for Fortran programs, and the other, to create plots from Fortran programs.

4.3.1 X11 Menus from Fortran

The **xlmenu** subroutine causes a menu to pop up on the screen, centered on the current position of the mouse cursor, and returns the index of the menu item selected upon release of the mouse button. Useful for prompting an interactive Fortran program's user to select an item from a list. **XMENU** is the same as **XLMENU**, except that there is no title. The font used within the menus is specified in the user's X application resources data base file, e.g., **Xmenu.font: 8x13bold**. Typically, this file is named **.Xde-faults** or **.Xres**. For example,

CALL XLMENU (title, list, nlist, jpickd)

title	a character string, the title of the menu
list	a character array, each element being a menu item
nlist	an integer, the number of menu items in <i>list</i>
jpickd	an integer, the returned ordinal of the selected menu item

4.3.2 X11 Plotting from Fortran

All arguments beginning with i are INTEGER, all others, CHARACTER. All heights, widths, distances, and positions are expressed in pixels, relative to (0,0) at the lower left corner of the window.

Sets the current foreground color to that specified by <i>string</i> . A list of strings with their red, green, and blue components is located in /usr/X11/lib/X11/rgb.txt. Command xrgbsel displays the colors specified in /usr/X11/lib/X11/rgb.txt.
Draws a line to ix, iy , which becomes the current position.
Erases the window.
Flushes output to the X display.
Sets the current font as specified by <i>string</i> . Command xlsfonts lists, and commands xfontsel and xfbrows display, the various fonts available on the display device.
Required. Must be called first to create the window in accord with the fore- ground, background, and geometry resources defined in the user's X appli- cation resources data base file (typically named .Xdefaults or .Xres), or in accord with defaults. For example,

•

	Xplot.forground: yellow Xplot.background: blue Xplot.geometry: 600x450+200+100
	The defaults are black, white, and half the screen width by half the screen height, with no positioning, respectively.
XINQ (inq)	provides information about the X11 server. inq is an 8-element integer array in which are returned:
	 inq(1) window width inq(2) window height inq(3) screen width inq(4) screen height inq(5) pixels per inch horizontally inq(6) pixels per inch vertically inq(7) character height inq(8) maximum number of colors
XLOCAT (ix,iy,ibuttn)	Returns pixel location ix, iy pointed to by the mouse when button $ibuttn$ is pushed. The mouse buttons are usually numbered left to right.
XLTYPE (string)	Sets the line type to <i>string</i> , which must be one of solid , dot , dash , and dotdash .
XLWID (iw)	Sets the line width to <i>iw</i> pixels.
XMOVE (<i>ix</i> , <i>iy</i>)	Moves the pen to ix, iy , which becomes the current position.
XPAUSE	Pause until a mouse button is pushed in the plot window.
XPOLYF (<i>ix</i> , <i>iy</i> , <i>np</i>)	Draws a closed filled convex polygon using the current foreground color. Integer arrays ix and iy contain np coordinate pairs. If the first and last points do not coincide, the polygon is automatically closed.
XRGB (ired,igreen,iblue)	Sets the current foreground color to that specified by the arguments, which have values from 0 through 32767, and specify the intensity of the corresponding primary color.
XRSIZE (iw,ih)	Changes the width and height of the window to iw,ih , respectively. Should not be called after plotting has begun but may be called between plots.
XRSTR (ix,iy,iang,string)	Places a rotated string at position ix, iy with angle of rotation <i>iang</i> . <i>iang</i> increases in the counterclockwise direction with zero at the 3 o'clock position, and is in degrees times 64.
XSTR (<i>ix</i> , <i>iy</i> , <i>string</i>)	Places the lower left corner of $string$ at position ix, iy on the plot, which position becomes the current position.
XTEXTW (string,iw)	Returns in <i>iw</i> the width in pixels of <i>string</i> .
XTITLE (title)	Changes the title on the window and on the window manager icon to title.

4.3.3 Sample Fortran Program with X11 Interface

Figure 4.1 presents a simple Cray Fortran program which computes the monthly outstanding balance of a simple interest loan. Results are displayed graphically with two different formats. The **segldr** command requires arguments -L/usr/X11/lib -lXf77 -lX11.

```
program loan
       affects appearance; eg, 3.0 means 3000. is by 1000s
с
                               and 2999. is by 100s
с
                               5.0 means break is at 500.,
с
                               5000., 50000., etc.
с
       parameter (break=5.)
       character abc*10, format*26, title*63
       dimension npix(8), iscr(2), ires(2)
       equivalence (iscr(1), npix(3)), (ires(1), npix(5)),
                   (ichht,npix(7)), (ncolor,npix(8))
       dimension date(600), bal(600)
       iwide(x) = int (log10(x+.01))+1
       read initial amount, monthly payment, annual interest percent
с
       write (*, (/2a/))
              'Enter initial amount, monthly payment, annual percent,',
              ' with decimal points:'
       read (*,*) bal(1), pay, fint
       date(1) = 0.
       create the format to create the title
с
       write (format, (a, i2.2, a, i2.2, a, i1, a))
              (a,f,iwide(bal(1))+3, .2,a,f,
      ╋
                                    <sup>.2,a,f</sup>,
      +
              iwide(pay)+3,
             iwide(fint)+3,
                                    (.2,a)
      +
       create the title
с
       write (title,format)
              'LOAN AMORTIZATION: $',bal(1),' by $',pay,' monthly, at ',
      +
              fint,'%'
      +
       compute monthly balances
с
       fint = 1. + fint / 100. / 12.
       n = 1
       do while (bal(n).gt.0.)
           n = n + 1
           date(n) = date(n-1) + 1./12.
           bal(n) = bal(n-1) * fint - pay
       enddo
       bal(n) = 0.
       call xinit
       call xtitle (title)
       call xfont ('screen.b.14')
       border width in pixels
с
       ibdr = 10
       distance between vertical axis tic marks, user units
с
       yinc = 10. ** int (log10(bal(1)/break+.01))
       plotting limits, user units
с
       xmin = date(1)
       xmax = aint (date(n)+1.)
       iymax = int (bal(1)/yinc+1.)
       if (mod(iymax,2).ne.0) iymax = iymax + 1
       ymax = iymax * yinc
       horizontal space for vertical axis labels, pixels
с
```

```
abc = (100000000)
       call xtextw (abc(1:int(log10(ymax+.01))+1),ix)
       ix = ix + ibdr
       output results, change window size, output results
С
       do 100 loop = 1, 2
          if (loop.eq.2) call xrsize (800,600)
          query the X server
с
          call xinq (npix)
          iy = ichht * 2 + ibdr
          mx = npix(1) - ibdr*2
          my = npix(2) - ibdr
          xscl = real (mx-ix) / (xmax-xmin)
          yscl = real (my-iy) / ymax
          call xtextw ('Payment Years', iix)
          call xstr (ix+(mx-ix-iix)/2,ibdr, 'Payment Years')
с
          draw axes with solid lines
          call xltype ('solid')
          call xmove (ix,iy)
          call xdraw (ix,my)
          call xdraw (mx,my)
          call xdraw (mx,iy)
          call xdraw (ix,iy)
          draw results - red lines if color is available
с
          if (ncolor.gt.2) call xcolor ('red')
          call xmove (ix,int(bal(1)*yscl+iy))
          do i = 2 , n
              jx = (date(i) - xmin) * xscl + ix
              jy = bal(i) * yscl + iy
              call xdraw (jx,jy)
          enddo
          change background to black if color is available
с
          if (ncolor.gt.2) call xcolor ('black')
          draw and label grid - use dotted lines
с
          call xltype ('dot')
          vertical lines
с
          write (abc, (i2)) int (mod(xmin, 100.))
          call xtextw (abc(1:2),jjw)
          call xstr (ix-jjw/2,iy-ichht,abc(1:2))
          do id = nint(xmin)+1, nint(xmax)-1
              jx = (real(id) - xmin) * xscl + ix
              call xmove (jx,iy)
              call xdraw (jx,my)
              write (abc, (i2)) int (mod(real(id), 100.))
              call xstr (jx-jjw/2,iy-ichht,abc(1:2))
          enddo
          write (abc, (i2)) int (mod(xmax, 100.))
          call xstr (int((xmax-xmin)*xscl)+ix-jjw/2,iy-ichht,abc(1:2))
          horizontal lines
с
          write (abc, '(i10)') 0
          call xstr (ibdr/2,iy-ichht/3,abc(11-iwide(ymax):10))
          do id = 2 , iymax-2 , 2
             jy = real(id) * yinc * yscl + iy
```

```
call xmove (ix,jy)

call xdraw (mx,jy)

write (abc, '(i10) ') nint(id*yinc)

call xstr (ibdr/2,jy-ichht/3,abc(11-iwide(ymax):10))

enddo

write (abc, '(i10) ') nint (iymax*yinc)

call xstr (ibdr/2,iymax*int(yinc*yscl)+iy-ichht/3,

+ abc(11-iwide(ymax):10))

call xpause

call xerase

100 continue
```

end

Figure 4.1. Fortran Program Producing X Window Graphical Output

4.4 X11 Interface to PVI

To use the X11 PVI driver on a remote system such as the Cray X-MP/48, patton.arl.army.mil, /usr/brl/bin/tcsh users and /bin/csh users must

setenv PVLDEV_1 x11 setenv DISPLAY display_name.domain_name:0

and /bin/sh users must

PVLDEV_1=x11 DISPLAY=display_name.domain_name:0 export PVLDEV_1 DISPLAY

A typical domain name for ARL users is **arl.army.mil**. The trailing **:0** indicates that the display consists of only one device.

In addition, on an X terminal or workstation, a user would execute **xhost** host_name.domain_name or would add (or request to have added) a host_name.domain_name line to file /etc/X0.hosts. The **xhost** command must be executed each time the host is brought up under X Windows, whereas the entry in /etc/X0.hosts need be made only once.

The following entries in the X resource data base manager file (typically .Xdefaults or .Xres; read by xrdb during the initiation process for running X windows) explicitly set a user's PVI display to the defaults for a 1152x900 X display. The user may modify those characteristic as desired.

PVI.foreground:white PVI.background:black PVI.geometry:576x450

5. On-Line Information

This chapter provides an introduction to the ARLSCF on-line information and help sources. Boldface indicates information to be taken literally or, in a representation of screen output, something typed in by the user. Italics indicate something to be replaced with actual values by the user, operating system, or software in use; for example, prompt> denotes the system prompt and indicates that prompt will be replaced by the given system's name or by some other prompt specified by the user.

5.1 Manual Pages

All computers at ARLSCF have on-line copies of the various UNIX user manuals, referred to as "man pages." They provide information about system utilities and user commands. To view a man page, enter **man** command.

For example, Figure 5.1 is an extracts of the information obtained in response to entering **man jove**. Note that output on the various ARLSCF computers may differ slightly in format and even content.

JOVE(1B)

UNIX Programmer's Manual

JOVE(1B)

NAME jove – EMACS style screen editor

SYNOPSIS

jove [-t tagname] [+line] [file1 file2 ...]

DESCRIPTION

JOVE is an interactive display oriented editor which allows one to modify text easily. JOVE stands for Jonathan's Own Version of Emacs. This editor is modeled after the EMACS written at MIT by Richard Stallman. JOVE has tried to stick to the conventions of real EMACS,

Figure 5.1. Extract of man jove Output.

On the minicomputers, except in the System V environment, **man**'s output is automatically piped through **more** to control scrolling; press the space bar to view the next page. In the System V environment, **man**'s output will scroll down the screen right to its end; to control this scrolling, pipe **man**'s output through **more** (e.g., **man jove** | **more**) or toggle your terminal's scrolling stop/restart characters (usually CTRL-S/CTRL-Q).

On the Crays, **man**'s output is automatically piped through **pg** to control scrolling; press **return** to view the next page.

Both more and pg provide a repertoire of command line options and interactive commands to control their detailed behavior. Once in more or pg, interactive commands are available to scroll certain numbers of lines, search for certain strings, and in pg, to scroll backwards. Read these commands' man pages for additional information.

Using the **man** command presumes that one knows the name of the command of interest. This is not always the case. Use **man** $-\mathbf{k}$ keyword or **apropos** keyword to determine which commands provide

certain functionality. *keyword* is selected in the usual ways useful for keyword searches. Once a likely command is identified, use **man** command to obtain additional information thereon.

On the minicomputers, **man**'s output can be converted to a normal ASCII file by piping it through **col**; for example:

man command | col -b -f > filename

5.2 Public Information Directory

All the ARLSCF computers have a public directory, /usr/pub, which contains information of value to the general user community. The information and files containing it vary from one machine to another, but the following are typical:

manuals	only on the Crays; a list of Cray manuals currently available
notd	notice of the day (current information about the Crays)
notd.bob	month-long log of bob's schedule (down time, test time, etc.)
notd.patton	month-long log of patton's schedule (down time, test time, etc.)
readme.queues	two page summary of the available NQS queues (general information and use)
sys-admin	list of system administrators

One way to obtain this information is to execute:

more /usr/pub/filename

5.3 explain

Available only on the Crays, explain displays an explanation for many error messages, particularly for errors arising from the use of cf77, cdbx, and the Fortran and I/O libraries. The syntax is:

explain groupcode-errornumber,

where groupcode-errornumber is the more cryptic error message provided upon occurrence of the error. Figure 5.2 presents a sample explain session. Keyboard entries are emboldened. • indicates a RETURN.


5.4 docview

Available only on the Crays, **docview** provides on-line access to a great deal of documentation. It is more extensive in its coverage of some areas, such as Fortran, than the man pages, but does not yet cover all areas of interest. Inexperienced users should use the **docview** menu to review the list of documents available under **docview**. A particularly useful menu choice is **f** string. Execute **man docview** to obtain additional information. Figure 5.3 presents a sample **docview** session. Keyboard entries are emboldened. • indicates a RETURN. prompt> cf77 tryit.f•
cft77-33 cf77: ERROR
Unable to read file - tryit.f.
cft77-25 cf77: 1 CFT77 control statement errors occurred.
cft77-26 cf77: Compilation aborted.
prompt> explain cft77-33•

ERROR: Unable to read file - name.

The operating system was unable to read from the source input file or from the inline file. This usually occurs when there is no file with the specified name or when the file's read permission is not set properly.

For more information, read about compiling in the CF77 Compiling System, Volume 1: Fortran Reference Manual, Cray publication SR-3071. prompt>

prompt> docview.

D O C V I E W On-line Documentation System Command Menu

Please enter a command at the menu> prompt.

a[list] c[list]	List docnames in alphabetical order List docnames by subject category
d[list]	List docnames by date last submitted
f[ind] [string]	Find keywords and corresponding docnames associated with "string"
p[revious]	Return to the previous command mode
v[iew] [docname][keyword] w[rite] [docname][keywords]	View passage "keyword" in document "docname" Write passages specified by "docname" and "keywords"
h[elp] [topic]	Display help for the current screen or a Docview topic or command
m[enu] q[uit]	Display this menu Quit from Docview

Enter "help quick" for a quick look at how to use Docview menu> $q \bullet$ prompt>

Figure 5.3. Sample docview Session.

5.5 Electronic Mail

Electronic mail (email) provides a good source of on-line information and help. By sending a mail message to **support**, which is monitored by many people at ARLSCF, the user can obtain information and assistance on questions concerning either the Crays or the minicomputers. It is important that the message specify the computer to which the question or problem pertains. By sending a mail message to **craysupport**, the user can obtain information and assistance on questions concerning the Crays. Responses from either address are almost always obtained within a few days, and usually within a few hours.

5.5.1 Email on ARLSCF Non-Cray Machines

Execute man msg and man send for detailed information about the mail system. Figure 5.4 illustrates sending a message to support. Because the user wishes merely to send a message, he invokes only the send subsystem of msg. The session includes a request for help and the mail system's response. Keyboard entries are emboldened, and • indicates a RETURN.

prompt> send. SEND (6 Dec 1988 Update #32) To: support. cc: . Subject: user's short descriptive title. Type message; end with CTRL-D... user's message CTRL-DCommand or ?: ?. bcc bye check spelling delete body

edit body (using editor) vedit body (using veditor) file include header edit input more body program run quit review message send message set [option] [option value] Command or ?: s• support@ARL.ARMY.MIL: address ok Message posted.

prompt>

Figure 5.4. Sending a Message to support.

Figure 5.5 illustrates an invocation of msg, which is required if anything more than sending is to be done, and which permits send subsequently to be invoked.

Answer [message #(s)]Backup to prev msg & type itForward [message #(s)]Next message & type itSend (compose) a new messageHeaders of [message #(s)]Type [message #(s)] onto terminalGo to message #(s)]Delete [message #(s)]Current message # is typedUndelete [message #(s)]/-same as dcnY-Resend [message #(s)]Z-Two window answer

FILE HANDLING:MISCELLANEOUS:Exit and update -- normal exitJump into sub-ShellList [message #(s)] into text fileXtra user optionsOverwrite old file: current date and timePut [message #(s)] into msg file; ignore rest of lineQuit -- fast exit@ UndigestifyRead another msg file! sub-ShellMove [message #(s)] into msg file & mark as deleted

Examples of message #(s) are: 42 1-4 2,5,7-. 1-5,7-@ c 32-\$ <-

Figure 5.5. An Invocation of msg.

5.5.2 Email on patton and bob

There are two distinct mail systems on the ARLSCF Crays. Neither will accept incoming mail from any other machine. The Cray Research Inc. mail permits mail to be sent to accounts on the originating Cray and to accounts on other machines which are not ARLSCF Crays. The UNIX msg and send are useful only to send mail from the Cray to accounts on other machines which are not ARLSCF Crays. The Cray-2 can communicate only with machines on its classified net.

Cray Research Inc. mail can send email to accounts on the originating Cray and to accounts on other machines. For local mail on a Cray, a user name suffices as an address. For outgoing mail, the address must be of form *user@nodename*. For example, to send from the Cray X-MP to user joe who receives mail on one of the ARLSCF minicomputers (keyboard entries are emboldened, and • indicates a RETURN):

patton> mail joe@arl.army.mil• user's message CTRL-Dpatton> To send a preexisting file:

patton> mail joe@arl.army.mil<filename• patton>

The UNIX-style send can be used only to send mail from the Cray to other machines which are not ARLSCF Crays. No send mail is automatically dispatched from the Cray; any user must execute

/usr/mmdf/deliver -w -cbrlnet,smtp

to cause all send mail accumulated to that point to be dispatched. The msg and send manual pages are not available on the Crays.

5.5.3 Email and File Transfers

In general, email should not be used for file transfers. This is especially important for large files, and for transfers involving a Cray, because such activity can overload a machine's /usr file system. The NQS (see the chapter, "Batch Jobs"), invoked by the qsub command, provides a number of options and defaults to send information to the originating or other user at certain points during processing of the submitted job. At the ARLSCF, these transfers are accomplished through the email system; therefore, the user must not permit large amounts of information to be so transmitted. rcp and ftp (see the chapter, "File Transfers") are the proper and efficient commands to effect file transfers.

6. File Storage – On- and Off-Line

At the ARLSCF, disk space is limited, but new files are always being created. Therefore, some mechanism for "recycling" disk space is necessary. In addition, a mechanism to maintain backup copies of files is necessary in order to recover from losses due to system problems and inadvertent destruction by users. With the exception of file migration and t3480 archiving, the following mechanisms are available on all ARLSCF computers; file migration and t3480 archiving are available only on the Crays.

- file compression
- file migration
- /usr/tmp and /tmp directories
- user action
- users' own tape archives
- system backups

Details vary from one machine to another and are best obtained from the **man** pages and by discussion with a particular machine's system administrator, using email. Detailed information herein applies specifically to the Crays.

6.1 File Compression and Decompression

compress filename produces file filename.Z which, typically, is only 40% to 60% as large as the original. uncompress filename.Z restores a compressed file to its original form. compress requires that sufficient space be available for the compressed and uncompressed files to coexist. Upon successful completion, the original file is removed. Without filenames, both commands can appear in pipes, eliminating the need for both forms of the file to coexist. These commands are recommended over pack filename and unpack filename.z (note the lower case z) because they execute more quickly, achieve greater compression, and can be used in pipes.

6.2 File Migration

The UNICOS data migration facility attempts to maintain availability of disk space on the ARLSCF Cray computers by moving selected files to off-line media (at the ARLSCF, tape). Files which are migrated are still catalogued in their original directories, but the files themselves are no longer on-line.

6.2.1 Operation of System Initiated Migration

When a file system's free space falls below a critical level, file migration is initiated. Candidate files are those older than 1 day, larger than one block (4096 bytes, 512 words), and not exempted from migration (see .keep file in the following section, "User Interface..."). Within those constraints, files will be copied to tape (two copies for reliability) and deleted from disk, largest and oldest files first, until a certain amount of disk free space is restored.

6.2.2 Pros of File Migration

File migration frees disk space, allowing computer operations to continue.

File migration is completely transparent, except that a user

- can determine whether a file has been migrated (ls l displays m rather than in the leftmost column when a file is migrated).
- can explicitly force particular files to be migrated and recalled.
- may experience delays in program execution/interactive response.

6.2.3 Cons of File Migration

The system can be costly to operate, in terms of reduced system responsiveness and use of assets (tape drives) when a migration is being done, when migrated files are being recalled, and when the migration database and tape library are maintained and consolidated.

Consider the effect of introducing into a user file system (e.g., /other, /amsaa) a file sufficiently large that migration is triggered. Files are migrated as indicated previously. The migration itself increases overhead and ties up tape drives. Of the files which migrate, users will recall those which are needed, further increasing system overhead and tying up additional tape drives. The larger the migration library and databases, the worse will be the increases in overhead. Furthermore, it is the larger files which are migrated; when a sufficient number of them are recalled, migration will again be triggered. It has happened (infrequently) in the past that a particularly vicious cycle is entered, wherein little but migration and recall occur. Some solutions to these problems are discussed in the following paragraphs.

Each file in a file system requires an inode, wherein is kept information permitting the operating system to find that file on demand. There are only a certain number of inodes; thus a large number of small files could "fill" a file system, even though adequate disk space remain. File migration is not triggered by running out of inodes, nor does its operation reduce the number of inodes in use because migrated files are still catalogued in their original directories.

6.2.4 Current Status of the File Migration System

To ensure reliability, two copies are kept of every file migrated.

Currently, the ARLSCF migrated file library consists of approximately half a terabyte of information, constituting approximately a third of a million files stored on approximately 3000 tapes. The number of files held in migration and the number of tapes used to hold those files continue to grow. The larger the number of migration tapes, and the greater the number of files in the migration database, the less efficiently the migration software operates. In addition, there is a limit the the number of migration tapes which can be maintained, due simply to space available.

Periodically, a reconciliation of files known to the migration database against files on-line and on tape is required. Periodically, the entire pool of migration tapes must be merged to eliminate space wasted by partially filled tapes, files deleted by users but still on tape, and multiple copies of files. These actions consume significant amounts of computer time and other assets.

6.2.5 User Interface with the File Migration Facility

To determine if a file is migrated, execute ls - l. A migrated file will display an m in the leftmost position of the output.

To exempt certain files from migration, create in your home directory a file named .keep, and in that file place, left-adjusted, one per line, the full path name of each file to be exempted. The files named in .keep,

Introductory User Guide - May 1993

starting with the first, and continuing up to but not including the file which exceeds a certain limit, are exempted from system initiated migration. Currently, the limit is 2000 blocks, a block being 4096 bytes or 512 words.

To cause specific files to be migrated, execute **dmput** *filenames*. Do not use migration as an **archival system**. A legitimate and beneficial use of **dmput** is to cause migration of files which are too new to be migrated automatically and which are large enough to be significant contributors to the need for migration. When this is not done, such files may cause the migration of many other files. In turn, their migration, subsequent recalls, and contributor to poor system response and large overhead. In a worst case, there can be so many requests for files from the migration library, and additional migrations generated as their restorations consume file system space, that the system essentially comes to a standstill. See also the following section, "/usr/tmp and /tmp Directories."

To recall a migrated file, execute **dmget** *filenames* (execute **man dmget** for additional information). This is an explicit recall and can conveniently be executed in background to avoid waiting while the files are recalled.

Migrated files can be recalled implicitly by attempting to access them (e.g., **cat** *filename*). Implicit recalls ultimately generate equivalents of **dmgets**, one for each implicit recall. If more than one file is to be recalled, it is much more efficient to explicitly use one **dmget** with the entire list of files. The **dmmode** command modifies the system's response to an implicit recall. **dmmode 0** sets a user's environment so that an implicit recall will be rejected and the message *filename*: File off-line, no automatic retrieval issued. **dmmode 1** sets a user's environment so that an implicit recall is honored and a delay ensues while the file is recalled. The **dmmode** command typically is placed in a user's **.profile**, **.cshrc**, or **.tcshrc** file. The system default is **dmmode 1**.

When a file is recalled, explicitly or implicitly, in foreground, there is a delay while the database is searched, the tape obtained and mounted, and the file read in. These delays can be quite short, but are very strongly influenced by the level of activity of the migration system (especially when there is contention for resources) and by the availability of operators.

6.3 /usr/tmp and /tmp Directories

Unlike "normal" user directories, /usr/tmp and /tmp are available to all users and are not subject to file migration. As indicated by their names, they are intended to hold files temporarily — 4 days in /usr/tmp on the Cray X-MP, 14 days in /usr/tmp on the Cray-2, and until the next reboot in /tmp, unless the directories fill up, in which case files must be removed. Every effort is made to contact owners of those files before they are removed.

The advantage of using these directories is that large files placed therein do not trigger migration. Files can be archived from these directories.

6.4 User Action

User directories can reach a critically low free space condition, triggering migration, which reduces system responsiveness. In addition, migration occurs frequently enough that the migration library and its database are already almost twice as large as ARLSCF staff had ever imagined they could become. They continue to grow. This causes difficulty for everyone, especially users, who occasionally suffer very long waits to recall files. In addition, library and database maintenance, while infrequent, consume resources: library tape merges degrade responsiveness, and reconciliation of the database and library with each other and with on-line file systems requires dedicated time.

When a user operates in such a way that his own files are not migrated, he benefits himself in that his computer activity is never delayed by (occasionally long) waits for the recall of his own migrated files. In

addition, he benefits the entire system because there is no increase in overhead due to the migration and recall of his own files. Finally, he benefits the entire system because the migration database and library remain smaller than would be the case, were his own files migrated.

The migration system is not, and does not operate well as, an archival system. By far the best, and a highly efficient, solution to the problems associated with data migration is for users to realize that their files consume scarce and valuable assets, even when they are migrated, and to act accordingly:

- Remove files (**rm**, **rm** -**r**), including migrated files, which are no longer needed. Removal of migrated files will be especially beneficial to the migration facility, which contains many files not accessed for very long times, because it reduces the sizes of the database and of the library.
- Archive on-line files (see the following section, "Archives") which are infrequently used, but of continuing value, and then remove (**rm**) them from disk.
- Archive large on-line files (see the following section, "Archives") even if they are frequently used, and then remove (**rm**) them from disk.
- Archive already migrated files, and then remove (**rm**) them from disk. (see the following section, "Archives"). Do not perform this action without first contacting the ARLSCF support staff because the attempt to be a "good computer citizen" may be counterproductive. Every migrated file being archived will first be recalled, thus reducing responsiveness and consuming disk space which may trigger other file migrations. Special techniques avoiding these problems are available to the support staff.
- Create, recall from archive, and recall from migration[†] large files^{††} into /usr/tmp and /tmp because these directories are not subject to migration.

6.5 Archives

There is no system archiving facility at the ARLSCF. There are, however, several utilities available for users to create, use, and maintain their own personal archives on tape. The user may choose to keep the tapes physically in his possession, or the ARLSCF staff will keep the tapes in environmentally controlled areas convenient to the appropriate computers. Cray-2 tapes, all of which are presumed to be classified until certified otherwise, may not be removed from that site without prior coordination with ARLSCF staff.

Because users' personal archives invariably are small (at least in comparison to the migration library), there is no need for elaborate database-driven schemes to access files, nor for elaborate tape merging and reconciliation schemes to maintain the archives. In addition, users are able to commit to tape and remove from disk their own files according to schemes which are more rational and usage driven than all-purpose schemes like the one used by file migration.

The utilities used for archiving are available to users to copy files to tape for transmittal to other locations, and also to read tapes received from other locations. ARLSCF staff members are available for assistance. Because there is such a wide variety of logical and physical tape formats, it is good practice to discuss intermachine tape transfers with ARLSCF staff.

[†] Users can recall migrated files only into the directories from which they were migrated. Depending on file system status, however, even the momentary introduction of a large file into a file system can trigger migration. ARLSCF support staff can recall migrated files into other than their original directories, and will be pleased to assist in the recall of large files from migration into /tmp or /usr/tmp.

¹¹ How large is "large?" File system migration is triggered when free space on a file system falls below 30% of its total size. Therefore, users dealing with large files ought to compare file sizes to file-system-free-space minus .3*file-system-total-size, to determine if recalling a particular file will definitely or probably trigger migration. The ls -1 command displays file size in bytes. The df -t command displays file system total and free space in blocks, a block being 4096 bytes.

6.5.1 t3480

Available only on the Crays, and ultimately invoking **cpio**, **t3480** is a UNICOS shell script which reads/writes files to/from multiple volumes of IBM 3480 cartridge tape(s). Each cartridge holds approximately 200 megabytes of information. These cartridges are recommended for archiving Cray files and for file transfer between the two Crays, but not for transmittal of files to other locations. Usually, these cartridges are not released into users' possession.

The user maintains his own audit of his archive. To assist in this maintenance, t3480 appends a descriptive log of all its tape writes (except when -T is specified) in the file **.tapelog** in the user's home directory. Do not let this file grow too large (or else, enter it into **.keep**; see the preceding section, "File Migration"), lest it be migrated and thus delay t3480. When writing, t3480 first writes the tape, then rewinds and reads it, making entries in **.tapelog**. Absence of expected entries in **.tapelog** indicates some failure in the writing process. t3480 writes or overwrites, but does not append, tapes.

Usage of **t3480**:

$$t3480 - r |-w| - n |-t [-T] - v vol [files]$$

- -r read *files* from the cartridges and write them to disk, creating directories and subdirectories as needed, overwriting files with the same path names as files read.
- -w writes files to previously written cartridges, which already have physical and logical labels. Overwrites all existing data.
- -n writes files to new cartridges, which have neither physical nor logical labels.
- -t writes to standard output a list of the files on the cartridges.
- -T modifies the action of -r |-t to read or catalogue a logically unlabeled tape, and of -w |-n to write or overwrite a physically and logically unlabeled tape (a new tape). Only one cartridge is processed, so writes cannot be for more than 200 megabytes. Useful with tapes from/to another machine. Because of security considerations, creation of tapes intended for transfer from ARLSCF's Cray-2 requires prior coordination with ARLSCF staff.
- -v vol vol is the user-supplied portion of the 6-character tape label: 3 letters (**t3480** converts lower case to upper case) and digits. **t3480** provides 1 character identifying the host machine, 2 two digits specifying the cartridge count.
- files If no files are listed, all files and subdirectories in the current directory are written to or read from the tape. t3480 expands UNICOS wild card characters such as * and ?.

Examples:

• Write files **abc** and **def** on new cartridges on patton.arl.army.mil:

t3480 -n -v 123 abc def

The resulting label is W12301. Both files fit on one tape; W indicates a cartridge made on patton.

• Overwrite all files in directory work and its subdirectories on previously used tapes labeled WZBC01, WZBC02, ... (unneeded tapes become unreadable):

• Restore the directory work, but as directory play;

cd \$HOME mkdir play cd play t3480 -r -v ZBC

6.5.2 tar and cpio

tar and cpio can be used to save/restore (multiple) files and directories to/from tape. They are particularly useful for saving multiple files and directories on the same tape, tar providing an option-selectable append capability. These facilities are of value to users whose needs are not met by t3480, particularly when tapes are created for transfer to other machines (except that t3480 is preferred for transfers between the ARLSCF Crays), and to users who choose to deal with tapes on machines other than the Crays, even when they are dealing with Cray files. For detailed information, execute man tar or man cpio.

6.6 Tape Usage

The preferred method for reading/writing tapes on the ARLSCF Crays, for the maintenance of archives, and for transfer between the Crays, is **t3480**.

For other purposes, tapes containing Cray files are found by some users to be more conveniently read/written on other ARLSCF machines (minicomputers, workstations, etc.), or on machines at other sites. Typically, these users make use of **rcp** or **ftp** to transfer the files of interest to/from the "other" machine, and **tar** or **cpio** to read/write the tape. Such methods require the user to consider how the tapes physically will be mounted on the desired machine.

The remainder of this section is intended for users who choose to read/write tapes on the ARLSCF Crays by means other than **t3480**. The Cray Tape Controller requires that a setup procedure be followed whenever tapes are used on the Crays (this procedure is built into **t3480**).

The ARLSCF provides two types of tape drive, the IBM 3420 (round) and the IBM 3480 (cartridge). Before a drive can be accessed, **rsv TAPE** or **rsv CART** must be executed to reserve a tape resource, round or cartridge, respectively. A user must not execute **rsv** when he has already reserved resources; **rls** -**a** releases all of a user's resources. If the requested resource is not available, or if resources are already reserved, an error message is issued. Once the **rsv** has been successful, the user executes a **tpmnt**, which requests the operator mount a tape on a drive, provides additional information to the tape subsystem, and creates a user-named file in /**tmp**. Finally, the user executes a command to read/write from/to that /**tmp** file which acts as an image of the tape. It is important that the user execute **rls** -**a** upon completion, else the resource remains unavailable to other users. For detailed information on **rcp**, **ftp**, **tar**, **cpio**, **rsv**, **rls**, and **tpmnt**, execute the **man** *command*.

For example, to display a 1600 bpi (bits per inch) round tape's contents on the monitor:

```
rls -a
rsv TAPE
tpmnt -g TAPE -d 1800 -p /tmp/scratch -v VOL1 -l al
cat /tmp/scratch
rls -a
```

For example, to use **tar** to write the entirety of directory **abc** to a cartridge tape:

rls -a rsv CART tpmnt -g CART -b 4096 -p /tmp/cart -v VOL1 -l al tar cvbf 8 /tmp/cart abc rls -a

Some other commands of interest when using tapes are:

tpstat	display the status of all tape devices.
msgi	send an informative message to the operator.
msgr	send an informative message to the operator and require acknowledgement.

For additional information, see the Cray publication, UNICOS Tape Subsystem User's Guide, SG-2051 6.0.

6.7 Backups

All publicly accessible machines at the ARLSCF are incrementally backed up to tape. One copy is made, during low-use hours at night. In general, all user directories are backed up. In general, a level 0 backup (all files) is done monthly; level 1 (all files with mod dates later than the level 0), weekly; and level 2 (all files with mod dates later than the level 1), daily.

On the Cray X-MP, backups are done on the first Sunday, every other Sunday, and every other day, respectively. Level 0 tapes are retained for 3 months, and levels 1 and 2, for 6 weeks. In addition, /usr/tmp is level 0 backed up daily, and the tapes retained for 4 days.

On the Cray-2, backups are done on the first Thursday, every other Thursday, and every other day, respectively. Level 0 tapes are retained for 3 months, and levels 1 and 2, for 6 weeks. In addition, /usr/tmp is level 0 backed up infrequently, on an *ad hoc* basis and by special arrangement.

In general, on the minicomputers, backup tapes are retained for 3 months (level 0) and 4 weeks (levels 1 and 2). For specific details on a particular minicomputer, contact its system administrator by email.

File Storage - On- and Off-Line

Intentionally Left Blank

7. File Transfers

This chapter presents several methods for transferring files among computers at the ARLSCF, or between other sites and the ARLSCF. The transfers are electronic over a network or manual by physically transporting tapes. More complete discussions of the techniques can be found in the on-line manual pages (discussed in the "On-Line Information" chapter of this document) on ARLSCF computers.

7.1 Electronic Transfers

Electronic file transfers can be effected by using ftp, rcp, or kermit. These utilities can be used among machines at the ARLSCF, and between the ARLSCF and other sites.

Electronic mail may be used to transfer files, but it is inefficient for this purpose, and large files will severely burden the mail system.

7.1.1 ftp

ftp (file transfer protocol) permits file transfers among diverse machines running diverse operating systems. It is interactive and has on-line help. Because of its extensive command repertoire, it provides considerable flexibility in the transfer of files. Many sites (but not ARLSCF) provide a "guest" account (login name: **anonymous**) so that users with no account on the remote machine can still copy files therefrom.

Figure 7.1 presents an example wherein ftp is used to transfer file joefile from adm.arl.army.mil to patton.arl.army.mil. User joe is executing ftp on adm and has an account on patton. Keyboard entries are emboldened. • indicates a RETURN.

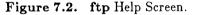

prompt> ftp patton.arl.army.mil• Connected to patton.arl.army.mil. 220 patton FTP server (Version 5.2 Fri Sep 7 14:09:58 CDT 1990) ready. Name (patton.arl.army.mil:joe): joe• 331 Password required for joe. Password:user enters password, not echoed to screen. 230 User joe logged in. ftp> put joefile• 200 PORT command successful. 150 Opening ASCII mode data connection for joefile. 226 Transfer complete. local: joefile remote: joefile 532 bytes sent in 0.048 seconds (11 Kbytes/s) ftp> bye• 221 Goodbye. prompt>

Figure 7.1. ftp File Transfer.

For a transfer in the opposite direction (patton to adm, user still executing ftp on adm), the only difference in the user's actions would be to enter get rather than put. In certain cases, the user can abbreviate the remote machine name. In the example, patton.arl.army.mil could have been abbreviated to patton.

Figure 7.2 shows a list of ftp commands obtained from within ftp by typing help or ?. • indicates a RETURN. Descriptions of these commands may be obtained by executing man ftp.

```
prompt> ftp•
ftp > ?•
Commands may be abbreviated. Commands are:
                             macdef
                                                         send
t
                                           proxy
              \mathbf{cr}
$
                             mdelete
              delete
                                           sendport
                                                         status
                             mdir
                                                         struct
account
              debug
                                           put
                                           pwd
                                                         sunique
append
              dir
                             mget
ascii
              disconnect
                             mkdir
                                           quit
                                                          tenex
                             mls
                                                          trace
bell
              form
                                           quote
              get
                             mode
                                           recv
                                                          type
binary
                                                          user
bye
              glob
                             mput
                                           remotehelp
                                                          verbose
              hash
                                           rename
case
                             nmap
                                                          ?
cd
              help
                             ntrans
                                           reset
              lcd
                                           rmdir
cdup
                             open
close
              ls
                             prompt
                                           runique
ftp> bye•
prompt>
```


7.1.2 rcp

rcp (remote copy utility) is the most convenient way to transfer files among UNIX machines, but it is not nearly so flexible as **ftp**. There must be an appropriate **.rhosts** file in the user's home directory on the remote machine. A **.rhosts** file contains a list of the names of machines from which the remote machine might be addressed, one name per line, each beginning in column 1. For example, to perform as in the **ftp** example, but using **rcp**, user **joe** would have a **.rhosts** file in his home directory on patton, containing at least the line

adm.arl.army.mil

Entering

rcp joefile patton:joefile

has exactly the same effect as the **ftp** example, and the circumstances of its execution are exactly as in that example, with the addition that user joe has an appropriate **.rhosts** file in his home directory on patton.

Were the desired transfer to be in the opposite direction (patton to adm, user still executing **rcp** on adm), the user would enter

rcp patton:joefile joefile

In short, the original file is always the first argument, and the copy of the file, the second. Whichever is on the remote machine is prefixed with the name of that machine and a colon. Either file name may be

replaced with a full path name or a relative path name – relative to the current directory on the local machine, or to the user's home directory on the remote machine. The copy file name may be replaced with an existing directory name, in which event the copy of the file is placed in that directory with its original name. The $-\mathbf{r}$ option specifies recursive use; that is, the original name specifies a subtree rooted at that name, and the copy name specifies a directory which is created and into which is copied the subtree.

7.1.3 kermit

kermit is useful not only to transfer files, but also to enable the local computer to emulate a terminal on the remote machine. The local and remote hosts may be of diverse types running diverse operating systems. In this role, **kermit** is particularly useful when the local machine is a PC, Macintosh, etc., and communicates over telephone lines using a modem. Establishing communications requires that the local **kermit** be "set up" with parameters dependent upon the hosts and modems involved. Once **kermit** communications are established, the local machine emulates a terminal connected to the remote host, whose repertoire of commands can be executed. In particular, **kermit** can be invoked on the remote host and commanded to send/receive files. An escape is then made to the local **kermit**, which is commanded to receive/send files.

7.1.4 Electronic mail

In general, electronic mail (email) should not be used for file transfers. This is especially important for "large" files, and for transfers involving a Cray, because such activity can overburden a machine's /usr file system.

The NQS (see the chapter, "Batch Jobs"), invoked by the **qsub** command, provides a number of options and defaults to send information to the originating or some other user at certain points during processing of the submitted job. At the ARLSCF, all these transfers are accomplished through the email system; therefore, the user must not permit large amounts of information to be so transmitted.

With awareness of the potential for problems, users can use email occasionally to transfer small files (less than 1 megabyte) at the ARLSCF or between the ARLSCF and remote sites. Transfers of this sort are only indirectly to a particular machine; rather, they are to a particular addressee and, in turn, to whichever machine is designated as the addressee's mail receiver. This provides the convenience that the sender need not consider whether he has an account on the target machine, nor whether he has the permissions necessary to write the file at its destination, nor even what the destination ought to be.

7.1.4.1 Email Transfers Not Involving the ARLSCF Crays

Execute man msg and man send for additional information about the email system. Figure 7.3 illustrates sending a file in the current directory to user **joe**; were the file in some other directory, a full or relative path name would be needed. Because the sender wishes merely to send a message, he invokes only the **send** subsystem of **msg**. The session includes a request for help and the mail system's response. Keyboard entries are emboldened, and • indicates a RETURN. File Transfers

prompt > send• SEND (6 Dec 1988 Update #32) To: joe• cc: • Subject: the file you wanted Type message; end with CTRL-D... CTRL-DCommand or ?: ?• bcc bve check spelling delete body edit body (using editor) vedit body (using veditor) file include header edit input more body program run quit review message send message set [option] [option value] Command or ?: f. File: filename. ...included Command or ?: s. joe@ARL.ARMY.MIL: address ok Message posted.

prompt >

Figure 7.3. sending a Message.

7.1.4.2 Email Transfers Involving the ARLSCF Crays

There are two distinct mail systems on the ARLSCF Crays. Neither will accept incoming mail from any other machine. The Cray Research Inc. mail permits mail to be sent to accounts on the originating Cray and to accounts on other machines which are not ARLSCF Crays. The UNIX msg and send are useful only to send mail from the Cray to accounts on other machines which are not ARLSCF Crays. The Cray-2 can communicate only with machines on its classified net.

Cray Research Inc. mail can send email to accounts on the originating Cray and to accounts on other machines. For local mail on a Cray, a user name suffices as an address. For outgoing mail, the address must be of form *user@nodename*. For example, to send from the Cray X-MP to user **joe** who receives mail on one of the ARLSCF minicomputers (keyboard entries are emboldened, and • indicates a RETURN):

patton> mail joe@arl.army.mil• user's message CTRL-Dpatton> To send a preexisting file:

```
patton> mail joe@arl.army.mil<filename•
patton>
```

As an aside, note that assistance can be requested of **craysupport** with the address **craysupport@arl.army.mil**.

The UNIX style send can be used only to send mail from the Cray to other machines which are not ARLSCF Crays. No send mail is automatically dispatched from the Cray; any user must execute

```
/usr/mmdf/deliver -w -cbrlnet,smtp
```

to cause all send mail accumulated to that point to be dispatched. The msg and send manual pages are not available on the Crays.

7.2 Manual Transfers

In general, files can be transferred between machines and sites on 9-track tapes. At the ARLSCF, such tapes can be read and written with the dd, cpio, tar, and ansir (read only) utilities. We strongly recommend that users who are not themselves expert in tape operations, and who wish to transfer files between sites via tape consult with both the writing and the reading site support staffs before the tape is written. When a 9-track tape written elsewhere with utilities other than tar is to be read at the ARLSCF, the requestor must be prepared to specify the details of the tape structure (e.g., block size, record length, label information, mapping scheme).

Files can be transferred between certain machines and certain sites on IBM 3480 cartridge tapes. At the ARLSCF, such tapes can be read and written with the **t3480** utility, which invokes **cpio** with appropriate options and issues other commands.

7.2.1 t3480

Available only on the Crays, and ultimately invoking **cpio**, **t3480** is a UNICOS shell script which reads/writes files to/from multiple volumes of IBM 3480 cartridge tape(s). Each cartridge holds approximately 200 megabytes. These cartridges are recommended for archiving Cray files and for file transfer between the two Crays, but not for transmittal of files to other locations. Usually, these cartridges are not released into users' possession. Except when $-\mathbf{T}$ is used, **t3480** will write across tape boundaries as necessary to produce multivolume tape files. Detailed **t3480** information is available in the man pages.

For example, the command

t3480 -n -v vsn -T filenames

specifies a new cartridge (which implies a write operation), with neither physical nor logical label (-n), specifies the user portion of the tape label/volume name to be vsn(-v), and specifies that the purpose of the tape is to transfer files between the two ARLSCF Crays (-T). In addition, the -T option suppresses creation and update of the user's **.tapelog** file and restricts the writing to a single cartridge. Replacing -n with -r will read the resulting cartridge.

Reading and writing tapes always involves coordination with the machine operators or other support staff members, if only to request that tapes be mounted (t3480 automatically issues such requests). When, however, tapes are written to transfer files from the ARLSCF Cray-2, security considerations mandate that the user communicate directly with support staff.

7.2.2 dd

The dd (data dump) program is the preferred utility for reading and writing tapes transferred between sites. dd can read and write tapes in many different formats for compatibility with many different computers and operating systems. More complete information is available in the man pages.

For example, on a minicomputer, the command

dd if=filename of=/dev/rmt0 obs=1320 cbs=132 conv=block

writes file *filename* onto the tape on drive **0** with a block size of 1320 bytes (characters) and fixed length records of 132 characters. To read that tape into file *filename* requires the exchange of the values associated with the **if** and **of** options, the replacement of the option name **obs** with **ibs**, and change of the **conv** option value from **block** to **unblock**.

dd on the Crays does not support block/unblock conversion. If it is necessary to read/write dd tapes using this feature with Cray files, we recommend those files be transferred to an appropriate minicomputer and the tape operations be performed there. Another option is to obtain a program which can read and write under under format control to convert between fixed length and variable length records, and use it in conjunction with dd on the Crays. For example, on patton, the commands

```
rsv TAPE

tpmnt -l nl -g TAPE -p tmp.tape.link -v eid -b 1320

pad < filename | dd of=tmp.tape.link bs=1320

rls -a
```

write file *filename* onto an unlabelled tape with external identification *eid*. The tape is written with a block size of 1320 bytes (characters). The result is the same as on the minicomputer, given that program **pad** reads file *filename* one variable length record at a time, pads that record to 132 characters with blanks, and then writes it to standard output. To read that tape into file *filename* requires the **dd** command line be replaced with

```
dd if=tmp.tape.link bs=1320 | unpad > filename
```

where unpad strips the trailing blanks from the fixed length records.

7.2.3 cpio

cpio is useful when the writing and the reading are both done on UNIX systems. **cpio** $-\mathbf{o}$ reads from standard input to obtain file names and writes those files to standard output. **cpio** $-\mathbf{i}$ reads from standard input information previously processed by **cpio** $-\mathbf{o}$, extracts the individual files specified as arguments (with shell expansion of metacharacters, default *), and places those files into the current directory. More complete information is available in the man pages. We recommend that users not expert in tape operations avoid **cpio** (except as invoked through **t3480**).

7.2.4 tar

tar (tape archive) is useful when the writing and the reading are both done on UNIX systems. Its use is particularly convenient when an entire directory or subdirectory structure is to be written to or copied from tape. More complete information is available in the man pages.

For example, on a minicomputer, the command

tar -c.

copies the entire subtree rooted at the current directory to the tape mounted on the default drive and

tar - x.

restores that subtree, rooting it at the current directory. Ownership, group, permissions, and modification times can be preserved or changed. Suffixing v to the option in either command makes the command verbose.

On the Crays, **tar** operates similarly, but the **tar** command line must be augmented with other commands, as is the case for **dd** (discussed previously).

7.2.5 ansir

ansir (ANSI read), not available on the Crays, reads ANSI labeled tapes. By default, it opens in interactive mode, wherein the user is questioned about various characteristics of the tape. The user must know the character set, record length, block size, and number of files on the tape.

Figure 7.4 depicts extraction of two files from a previously written tape, user entries being emboldened and • representing a RETURN: ****

prompt> ansir /dev/rmt0

*** At file number 0: VOL1-label missing

*** At file number 1: HDR1-label missing HDR2-label missing Tape mark missing

I shall have to ask some questions; to get more information, answer a question with a single question mark (?).

Please type your file name: prog23 Please type your character code: ASCII Default record format: U Please type a new record format, or press RETURN: • Default block length: 32766 Please type a new block length, or press RETURN: • Default buffer offset: 0 Please type a new buffer offset, or press RETURN: • EOF1-label missing EOF2-label missing Tape mark missing

*** At file number 2: HDR1-label missing HDR2-label missing Tape mark missing Please type your file name: data23 Default character code: ASCII Please type a new character code, or press RETURN: • Default record format: U Please type a new record format, or press RETURN: • Default block length: 32766 Please type a new block length, or press RETURN: • Default buffer offset: 0 Please type a new buffer offset, or press RETURN: • EOF1-label missing EOF2-label missing Tape mark missing

*** At file number 3: HDR1-label missing HDR2-label missing Tape mark missing Please type your file name: **CTRL-C** prompt>

Figure 7.4. Extracting Files from Tape.

8. Batch Jobs

This chapter presents an overview of the various methods for submitting batch jobs at the ARLSCF. The greater portion of the chapter is devoted to the NQS, used to submit a batch job to one of the Crays from that Cray. Other methods, such as interactive batch processing by executing in background, also are discussed briefly.

8.1 NQS

NQS is available only on the Crays. It permits submission of jobs exceeding the resource limits imposed on interactive jobs, both synchronous and asynchronous. NQS jobs are automatically checkpointed before intentional system shutdowns, thus allowing recovery when the machine returns. A detailed discussion of NQS can be found in the on-line manual pages and in the Cray publications, UNICOS Primer, SG-2010 6.0, and UNICOS User Commands Reference Manual, SR-2011 6.0.

8.1.1 The Queues

The **qsub** command is used to submit jobs into one of four queues:

- express Intended for high priority jobs. Charged double the normal rate.
- deferred Intended for low priority jobs. Charged half the normal rate. Receives little execution time unless the system is idle.
- debug Intended for short, quick turnaround jobs typical of debugging. Charged the normal rate.
- crayque The default. Intended to contain the great bulk of jobs submitted. Charged the normal rate. Jobs are automatically placed in subqueues based on the time and memory requirements specified in the job file. (Users can determine the memory required for a job by testing the executable with the **size** command. See the **size** man page for detailed information.)

Rates are specified in Appendix A.

In general terms, the queue structures on both the Cray-2 and the Cray X-MP are the same, but their specific characteristics reflect the hardware and usage differences of the two machines.

A job's **nice** value influences its execution priority; the higher the value, the **nice**r it is to other jobs and, hence, the longer it takes to complete, given that there is contention for system resources.

Batch Jobs

queue	permanent fi	le space (MW)	memory	size (MW)	nice	CPU time (sec)
	per process	per request	per process	per request	both	both
express	512	512	224	unlim	1	unlim
deferred	unlim	unlim	224	unlim	19	unlim
debug	512	512	224	unlim	4	180
crayque						
$\mathbf{x}\mathbf{s}\mathbf{m}\mathbf{a}\mathbf{l}\mathbf{l}$	128	256	4	4	6	3600
small	128	256	8	8	6	5400
medium	128	256	64	64	8	10800
large	256	512	128	256	10	72000
xlarge	unlim	unlim	224	unlim	10	172800
huge	unlim	unlim	224	unlim	10	unlim

8.1.1.1 Cray-2 Queues

8.1.1.2 Cray X-MP Queues

The express queue, as well as crayque, is split into subqueues. In addition, there may be special queues, not available to the general user community, created for extraordinary circumstances. The deferred queue and all 4 MW (actually, 3.6 MW) queues except debug execute only between 4 PM and 8 AM.

queue	permanent fi	le space (MW)	memory	size (MW)	nice	CPU time (sec)
	per process	per request	per process	per request	both	both
express						
express_2m	unlim	unlim	2.0	2.0	1	unlim
express_4m	unlim	unlim	3.6	3.6	1	unlim
deferred	unlim	unlim	3.6	3.6	19	unlim
debug	512	512	3.6	3.6	6	180
crayque						
$q2m_10m$	128	256	2.0	2.0	6	600
q^{2m-1h}	128	256	2.0	2.0	8	3600
$q^{2}m_{2}h$	128	256	2.0	2.0	8	7200
q^2m_20h	128	256	2.0	2.0	8	72000
q2m_unl	128	256	2.0	2.0	8	unlim
q4m_3h	512	512	3.6	3.6	10	10800
q4m_20h	unlim	unlim	3.6	3.6	10	72000
q4m_unl	unlim	unlim	3.6	3.6	10	unlim

8.1.2 Submitting NQS Jobs

Users must specify memory and time requirements with options on the command line, or with the same options on # QSUB lines at the beginning of the job file. The system uses these values for three purposes:

- To verify that a job may enter the specified queue.
- To place a job in the appropriate subqueue, if any. The subqueue selected is the first one encountered (in the order of the preceding tables) whose per-process and per-request limits are not exceeded by job requirements.
- To place limits on the resources a job may consume during execution. Users should not merely "guess high" to avoid being terminated during execution because so doing may result in long turnaround times.

8.1.2.1 Options – Security

The $-\mathbf{u}$ option permits a password to be supplied as part of the job. Do not use this option to provide a password. Users are directed not to include any password on the **qsub** command line or in the job file. Under no circumstances should any user ever enter any password into any file. The proper mechanism for validation of an NQS submission is through a **.rhosts** file.

8.1.2.2 Options

There are approximately 30 options to the qsub command. A brief introduction follows; detailed information may be found in the references already cited.

The following displays an NQS job file, and the command used to submit it on the Cray-2:

```
bob> cat subfile
                     # submit file to crayque
# QSUB-q crayque
# QSUB-eo
                      # standard error to standard out
                     # per-process memory limit
# QSUB-1m 8mw
                     # per-request memory limit
# QSUB-1M 8mw
# QSUB-1t 7500
                     # per-process CPU time limit
                     # per-request CPU time limit
# QSUB-1T 7500
                     # end of QSUB parameters
# QSUB
cft77 test.f
segldr test.o
a.out
bob> qsub subfile
Request 16.bob submitted to queue: crayque.
bob>
```

The blank # QSUB request signals the end of the # QSUB section. Current versions of UNICOS will recognize # QSUB lines beyond the blank one, but, starting with UNICOS 7.0, such a line will terminate recognition of # QSUB lines. Some or all of the values provided on # QSUB lines could, instead, have been supplied as options with arguments (and without the # QSUB) on the qsub command line. Most users find it more convenient to use the # QSUB form. In the event that some value is specified on both the qsub command line and in a # QSUB line, the value on the command line takes precedence.

"Per-process" and "per-request" limits both must be supplied. In general, lower case parameters pertain to per-process limits and upper case, to per-request limits.

A job file submitted via **qsub** is interpreted and executed as a shell script, by default in Bourne shell. It is important that normally other-than-Bourne-shell users provide an alternate (Bourne shell) environment within which the submitted job can execute, or specify that the submitted job is to execute in the desired shell. # **QSUB** -s *full-path-name-of-shell* can be used to specify, from within the submitted job, the shell in which the job is to execute.

The lim and limit commands should not be used in conjunction with NQS jobs because their behaviors are not the same on both machines, and because limits have been imposed on the values which they may specify. Values specified in this manner override earlier # QSUB values. On patton only, if lim is invoked with a time larger than 10 CPU minutes, the system will terminate the job and send a timeout message, even if # QSUB specified a longer time.

8.1.3 Monitoring NQS Jobs

NQS jobs may be monitored with the **qstat** command, which provides 16 options. Three of the more popular usages are:

qstat	displays the owner and status of each queue.
qstat - a	displays the owner and status of each job.
qstat –f queue	displays the limits associated with the named queue or subqueue. Nonpipe queue information is more detailed than for a pipe queue.

qdel permits users to delete their own jobs from the queues. If the job is merely queued, qdel job-id is sufficient. Once the job is running in the queues, qdel -k job-id is necessary. The man page discusses additional options.

8.1.4 Restrictions

Because of high demand for limited computing resources, the following is ARLSCF policy. A single user may have no more than two jobs per queue or subqueue per machine. A single user may have no more than four NQS jobs running simultaneously per machine. On the Cray X-MP, the deferred queue and all 4 MW (actually, 3.6 MW) queues except debug execute only between 4 PM and 8 AM. Should an extraordinary situation require exceptions to these restrictions, coordination with the system administrator is necessary.

8.2 at, batch, and cron

at permits a user to submit a batch job to start at a certain time. **batch** permits a user to submit a batch job into the MDQS queue. These commands are available on various ones of the ARLSCF computers, but not to the general user community on the Crays.

The cron daemon runs continuously on UNIX machines, reading the file /usr/lib/crontab once per minute and executing programs as indicated therein. Users do not have write permission to /usr/lib/crontab.

In exceptional circumstances, users may discuss their needs to run programs under **cron**, and to use **at** and **batch** on the Crays, with the appropriate system administrators.

8.3 Executing in Background

Suffixing a UNIX command with & causes the invoked program to run in background; i.e., asynchronously. When the job is placed in background, the system immediately returns its process id and control to the user, who may then proceed with additional interactive (synchronous) and background activity. The system notifies the user as each background job is completed. The status of background jobs can be checked with the **ps** and **top** commands, and they may be terminated with the **kill** command. Background jobs are terminated at system shutdown, and when the owner logs out. To avoid termination of background jobs upon logging out, users should place the command **nohup** in their .profile or .login files, or prefix the command with **nohup**:

nohup command-with-options-and-arguments-and-redirection &

On the Crays, background jobs are considered by the operating system to be interactive, rather than batch, jobs; hence, they are subject to the restrictions of interactive jobs. In particular, such jobs are limited to 10 CPU minutes each on the Cray X-MP.

9. Text Editors

This chapter discusses some of the text editors available on the ARLSCF computers. Extensive on-line documentation is available and is not reproduced here. Users choosing to do their editing on machines other than the Crays will often be rewarded with much more rapid response than the Crays offer.

9.1 Regular Expressions

Text editors typically provide a facility for finding a certain string of characters and then performing some action. For example, in ed, s/a/b/n substitutes b for the first occurrence of a on the current line and then prints the line and its line number. In the same manner, 17s/hyperutectic/hypereutectic/gn corrects the spelling of every occurrence of hyperutectic on line 17 and then prints the line and its line number. 1,\$s/hyperutectic/hypereutectic/gn corrects the spelling of every occurrence of hyperutectic throughout the entire file, printing out the text line and line number for every line on which this occurs. Finally, g/hyp.*tic/s//hypereutectic/gn changes every word beginning with hyp and ending with tic into hypereutectic, printing out the text line and line number for every line on which this occurs. Unfortunately, it also converts the line He was hyperactive and had a tic. into He was hypereutectic. The strings a, hyperutectic, and hyp.*tic are examples of regular expressions. "." and "*" are examples of regular expression meta-characters, "." meaning any number of occurrences (including 0) of the preceding character.

In the context of UNIX text editors, regular expressions are strings with their own syntax which represent sets of other strings of almost any degree of complexity; thus, they provide UNIX editors with an extremely powerful search capability. Detailed discussions of regular expressions are provided in the Cray publications, UNICOS User Commands Reference Manual, SR-2011 6.0 (available on-line; execute man ed), and UNICOS Text Editors Primer, SG-2050, in the entries for the ed editor. The various editors respond to regular expressions in ways which may differ somewhat from each other. These differences are documented.

Figure 9.1 presents some examples of regular expression matches. The regular expressions are shown with their delimiters, and the matching strings are underlined. Comments are italicized.

9.2 ed

ed is the standard UNIX line oriented text editor. Like other line oriented text editors, it tends to be inconvenient for most interactive uses; however, certain text editing tasks may lend themselves particularly well to its use. Large files generate even larger editor temporary files and cost many processor cycles on entry to ed. On the Cray-2, the buffer is limited to approximately 17 gigabytes and individual lines, to 4096 characters; reasonable editing sessions should be kept under 10 megabytes. On the Cray X-MP, the buffer is limited to approximately 250 megabytes, and individual lines, to 512 characters. For additional information, execute man ed or see the Cray publication, UNICOS User Commands Reference Manual, SR-2011 6.0. In addition, there is a tutorial in the Cray publication, UNICOS Text Editors Primer, SG-2050. Figure 9.2 is a demonstration of ed's use on the ARLSCF Crays. There will be minor (but perhaps disconcerting) differences between the Cray implementation and that on the minicomputers; one such difference is that the minicomputer implementations do not provide help. Screen responses/prompts are indented. Every keyboard entry line is followed by a carriage return; in a few cases, • represents an explicit carriage return. "RE" means "regular expression." Comments are italicized.

The quick red fox jumped over <u>the</u> lazy brown dog.
The_quick red fox jumped over the lazy brown dog.
The quick red fox jumped over the lazy brown dog.
The quick red fox jumped over the lazy brown dog.
The quick red fox jumped over the lazy brown dog.
The quick red fox jumped over the lazy brown dog.
The quick red fox jumped over the lazy brown dog.
The quick red fox jumped over the lazy brown dog.
The quick red fox jumped over the lazy brown dog.
The quick red fox jumped over the lazy brown dog.
The quick red fox jumped over the lazy br <u>own dog</u> .
The quick red fox jumped over the lazy brown dog.
The quick red fox jumped over the lazy brown dog.
The quick red fox jumped over the lazy brown dog.
The quick red fox jumped over the lazy brown dog.
The quick red fox jumped over the lazy brown dog.
<u>aaa</u> bbbcccbbbaaa constrain to beginning of line
aaabbbcccbbb <u>aaa</u> constrain to end of line
aaabbbcccbbbaaa one or more b's: no match
aaabbbcccbbbaaa one or more b's: no match
aaabbbcccbbbaaa zero or more b's: match beginning
aaabbbcccbbbaaa zero or more b's: match end
aaabbbcccbbbaaa zero or more not-a's: match beginning
aaabbbcccbbbaaa one or more not-a's: match
aaabbbcccbbbaaa zero or more not-a,b's: match beginning
aaabbb <u>ccc</u> bbbaaa one or more not-a, b's: match
<u>aaabbb</u> cccbbbaaa
aaabbbcccbbbaaa
aaabbbcccbbbaaa

Figure 9.1. Some Regular Expressions with Matching Strings

Text Editors

ed demo ?demo cannot open inp help	ut file	invoke ed, copy file '' ed's responses are ind no such file parentheses indicate o	lented
<pre>(.)a (.)b[n] (.,.)c (.,.)d e [file] E [file] f [file] f [file] (1,\$)g/RE/cmds (1,\$)G/RE/ h H help (.)i (.,.+1)j (.)kx (.,.)l (.,.)ma (.,.)n N (.)o[n] (.,.)p</pre>	append until . print next screen change until . delete lines edit new file force edit new file set file name global command interactive global help on last error toggle the help print command help insert until . join lines mark line with x list nonprintables move after line a numbered print switch p and n print overview print lines	<pre>P q Q (\$)r [file] (.,.)s/RE/new (.,.)ta u (1,\$)v/RE/cmds (1,\$)V/RE/ (1,\$)W [file] X z /RE ?RE (\$)= !command (.+1)<newline> \$;</newline></pre>	toggle prompt quit editor force quit read file substitute RE copy after line a undo last command inverse global inverse interactive write file enter crypt key write and quit search for string search backward print line number shell command print next line current line last line in file 1,\$.,\$
$ \begin{array}{c} f \\ d emo \\ \vdots \\ 0 \\ \vdots \\ 0 \\ a \\ 0 \\ a \\ b \\ b \\ c \\ c$		name of file copied in this is also the default line number of curren line number of last lin O because there is not append after most rec	t file name t line? ne? hing in buffer
Now is the time for all good men to come to the aid w demo.more 68 r demo.more 68 2r demo.more	of their party.	exit append mode write buffer to file ''d number of bytes read into buffer after read into buffer after	r's default (last)
68 .= 5 1,\$pn 1 Now is the 2 for all goo 3 Now is the 4 for all goo 5 to come to	d men time d men the aid of their party. the aid of their party.	print buffer lines 1 th	

Introductory User Guide - May 1993

Text Editors

```
8
        for all good men
   9
        to come to the aid of their party.
3,5d
                                                   delete lines 3, 4, 5
                                                   overwrite buffer with copy of demo.more
e demo.more
    ? warning: expecting 'w'
                                                   reminder to save buffer
e demo.more
                                                   override
   68
f
                                                   e changed the buffer name
   d emo.more
                                                   to default file, demo.more
w
   68
                                                   move line 3 to line after line 1
3m1
2,3t0
                                                   copy lines 2, 3 to top of file
                                                   print buffer with line numbers
, n
        to come to the aid of their party.
   1
        for all good men
    2
    3
        Now is the time
        to come to the aid of their party.
    4
    5
        for all good men
1,2d
                                                   delete lines 1, 2
3t.
                                                   copy line 3 to line after current line
                                                   delete line 4
4 d
1,$t$
                                                   duplicate, appending to end
, n
        Now is the time
    1
        for all good men
    2
        to come to the aid of their party.
    3
    4
        Now is the time
    \mathbf{5}
        for all good men
        to come to the aid of their party.
    6
3s/the/zzz/n
                                                   substitute 1st occurrence, line 3
         to come to zzz aid of their party.
                                                   substitute 1st occurrence, every line
1,$s/the/yyy/n
        to come to yyy aid of their party. only last line prints
    6
3n
        to come to zzz aid of yyyir party. note "their"
    3
1, \frac{s}{y_z}/x/g_n
                                                   substitute every occurrence, every line
    6
        to come to xxx aid of their partx. note "party"
, n
        Now is xxx time
    1
    2
        for all good men
        to come to xxx aid of xxxir partx.
    3
    4
        Now is xxx time
        for all good men
    \mathbf{5}
    6
        to come to xxx aid of their partx.
                                                   on all lines with x, all "o" to "z"
g/x/s/o/z/g
, n
    1
        Nzw is xxx time
        for all good men
    \mathbf{2}
   3
        tz czme tz xxx aid zf xxxir partx.
   4
        Nzw is xxx time
   5
        for all good men
        tz czme tz xxx aid zf their partx.
   6
g/z/d
                                                   delete all lines with "z"
, n
```

```
for all good men
   1
   \mathbf{2}
        for all good men
$t$
                                                   join the lines
1,$jn
        for all good menfor all good menfor all good men
   1
                                                   split the lines: i.e., replace each occurrence of
s/men/&\
                                                    "men" with "men" and a newline
/g
, n
        for all good men
   1
        for all good men
   2
   3
        for all good men
                                                   exit
q
   ? warning: expecting 'w'
                                                   repeat forces exit
q
                          Figure 9.2. An ed Demonstration
```

ed can be used noninteractively by embedding it in a shell script with a "here" file ("here" files are discussed in the Cray publication, UNICOS User Commands Reference Manual, SR-2011 6.0, under the shell command, sh; execute man sh for the on-line version). Figure 9.3 shows such a shell script fragment. The fragment is satisfactory only during June. Often, such things are more readily accomplished by other means, among which are the stream editor, sed, and the programming language, **awk**. Discussion of **awk** is beyond the scope of this document.

```
ed - <<********
                                      9 12:10:43 EDT 1989
r !date
                         # Fri Jun
s/....$/,&/
                                     9 12:10:43 EDT, 1989
                         # Fri Jun
s/^{.} \{10\}/\&,/
                         # Fri Jun 9, 12:10:43 EDT, 1989
s/ / /
s/,.*,/,/
                         # Fri Jun 9, 12:10:43 EDT, 1989
                         # Fri Jun 9, 1989
s/^{.} {7} / e/
                         # Fri June 9, 1989
s/^.../&day:/
                         # Friday: June 9, 1989
s/^Tue/&s/
                         # Friday: June 9, 1989
s/^Thu/&rs/
                         # Friday: June 9, 1989
s/Wed/&nes/
                         # Friday: June 9, 1989
w mydate
                         # into file "mydate"
                         # guit
q
* * * * * * * * * *
```

Figure 9.3. Noninteractive Use of ed

9.3 sed

sed, the stream editor, can be considered the batch counterpart of ed. Unlike ed, it can operate on arbitrarily large files because it copies one line into a buffer, executes all the commands which apply thereto (sometimes reading additional lines in the process), writes the result to standard out, and moves on to the next input line. Many of the editing commands are the same as in ed, but there are differences both in the interpretation of the same commands and in the commands available. The editing commands can be presented to sed as part of the command line, or in a separate file which will be read by sed. Figure 9.4 presents a shell script fragment, using sed, which is equivalent to the fragment of Figure 9.3. For additional information, execute man sed or see the Cray publication, UNICOS User Commands Reference Manual, SR-2011 6.0.

Figure 9.4. Use of sed

9.4 tr

The translate command, **tr**, is not an editor, but it does perform certain character transformations so nicely that it is well worth addressing here. **tr** is more completely documented in the on-line **man** pages and in the Cray publication, UNICOS User Commands Reference Manual, SR-2011 6.0. Basically, **tr** changes all occurrences of specified individual characters in a file to other specified individual characters. For example:

tr a b <in >out maps every *a* in file *in* to a *b* and writes the result to file *out*.

tr -s """ copies standard input to standard output and, in the process, replaces each string of repeated blanks with a single blank. Note that, in consecutive lines, a trailing string of blanks followed by a leading string of blanks counts as two separate strings because of the intervening newline character.

tr "[a-z]" "[A-Z]" maps every lower case letter into the corresponding upper case letter.

tr "[0-9]" "############" maps every digit into a #.

tr "[0-9]" "#*10" as above

tr "[0-9]" "#*" as above

- tr "[A-Z][a-z][0-9]" "[A*26][a*26][n*]" maps every upper case letter into an A, every lower case letter into an a, and every digit into an n.
- tr "\012" "~" maps every newline into a ~. This can be particularly useful prior to manipulating newlines in sed. Of course, the inverse tr command is executed after sed.
- tr -cs "[A-Z][a-z][0-9]" "[\012*]" maps all characters except letters and digits into newlines and compresses resulting strings of repeated newlines into single newlines. The result is a list of "words," one per line.

9.5 jove

jove, "Jonathan's Own Version of EMACS," is a widely available screen editor which, by virtue of its capabilities and features, the size of its ARLSCF user community, and the support available at the ARLSCF, has become the preferred editor at the ARLSCF. **jove** hews closely to the conventions of EMACS, although there are some departures. EMACS permits its user to define his own commands in addition to its native set, and also to bind native or created commands to various keys. New commands cannot be created in **jove**, but existing commands can be bound to any key, and commands can be combined into a macro that can be invoked like a standard command.

In common with many other screen editors, **jove** must be informed of the type of terminal from which it is being invoked. This is usually effected upon login, but if the screen seems not to respond properly (more likely when dialing in through a modem), ensure that the following actions have occurred, where *name* is the system's own name for the terminal type:

- in the Bourne shell: TERM=name export TERM
- in one of the C shells: set term=name

jove is invoked by the command

jove [options] [filenames]

jove provides one or more windows in which different files, or different parts or the same part of one file, are displayed and manipulated. The position of the cursor on the screen indicates the position within the file, and changes made are shown more or less immediately on the screen. Modifications are made to buffer copies of the files of interest rather than to the files themselves. The buffer copies can replace the original files or be saved as different files in addition to the original files at any time. **jove** attempts to preserve buffer contents in the event of a crash or a loss of communication.

jove has rather a large repertoire of commands, but a surprisingly small subset suffices for most editing tasks. The entire repertoire of commands and their default key equivalents are listed in Figure 9.5. Several commands accept regular expressions (if enabled), and a few prompt the user for additional input; such characteristics are not indicated in the figure. The *variables* permit the user modify the manner in which jove responds to certain commands and CTRL- key combinations. Every printable character is bound to the self-insert command; thus, merely typing causes text to be entered into the buffer. Except for self-insert, the more frequently used commands initially are bound to various keys:

- depressed in concert with the CTRL- key
- prefixed with the Escape key
- prefixed with the Escape key and depressed in concert with the CTRL- key
- prefixed with CTRL-X
- prefixed with CTRL-X and depressed in concert with the CTRL- key

Buffer Manipulation]	Movement (Small)		Text Modification	
buffer-position		backward-char	^B	c-tab	
list-buffers	^X^B	backward-paren	Esc [^] B	case-character-upper	C
make-buffer-unmodified	Esc	backward-word	Esc b	case-region-lower	^X^L
select-buffer	^Xb	beginning-of-line	^A	case-region-upper	^X^Ū
Beleev build	110	beginning-of-sentence	Esc a	case-word-capitalize	Esc c
) a latim of		end-of-line	[^] E	case-word-lower	Esc l
Deleting	^D	end-of-sentence	Esc e	case-word-upper	Esc u
delete-next-char		forward-char	^F	character-to-octal-insert	Loc u
delete-next-word	Esc d		г Esc ^F		Dec :
delete-previous-char	Del, [^] H	forward-paren		justify-paragraph	Esc j
delete-previous-word	Esc Del; Esc [^] H; [^] W		Esc f	newline-and-indent	Newline
delete-to-killbuffer	^X^K	next-line	<u>î</u> N	newline	Return
delete-white-space	Esc \	previous-line	^P	newline-and-backup	^O
erase-buffer		scroll-down	Esc z	paren-flash	
kill-buffer	^Xk	scroll-up	^Z	self-insert	very bou
kill-to-end-of-line	^K	-		text-insert	very boun
		Process Control		transpose-chars	^T
Tile Manipulation		exit-jove	^X^C	L	
find-file	'X'F	make	^X^Ĕ	Undeleting	
find-file-in-other-window	^X4	pause-jove	Escp	yank	ŶΥ
		shell-command	^X!	•	Esc y
find-tag	^X^T		A :	yank-pop	ESC y
insert-file	^X^I	shell-command-to-buffer		3371 1	
read-file	^X^R	spell-buffer		Windows	
write-current-file	^X^S; ^X^\	sub-shell	Esc !	delete-current-window	^Xd
write-modified-files	^X^M; ^X^Return	suspend-jove (= pause-jove)	delete-other-windows	^X1
write-named-file	^X^W			grow-window	^X^
		Region Manipulation		next-window	^Xn
Help and Terminal Comma	nds	append-region		number-lines-in-window	
apropos	Esc h	copy-region	Esc w	page-next-window	Esc ^V
clear-and-redraw	^L	filter-region		previous-window	^Xp
describe-command	Esc ?	write-region		shrink-window	
	^X?	WITCHEGION		split-current-window	^X2
describe-key		Searching and Replacing		Split-current-window	Λ2
redraw-display	Esc L		-	37 1 1 1	
reinitialize-terminal		first-nonblank	Esc m	Variables	
ring-the-bell	^G	i-search-forward	<u>^S;</u> ^\	allow-^S-and-^Q	
		i-search-reverse	^R	auto-indent	
Marks		query-replace-search	Esc q	backup-files	
exchange-point-and-mark	^X^X	replace-search	Esc ^E	c-mode	
set-mark	^@; ^(space)	search-forward	Esc s	case-independent-search	
	c, (1)	search-reverse	Esc r	fast-prompt	
Miscellaneous JOVE Functi	ons		2001	files-should-end-with-new	line
execute-extended-command		Tailoring jove		internal-tabstop	
four-times	^U	bind-macro-to-key		make-all-at-once	
next-error	^X^N	•		overwrite	
	AN	bind-to-key			
parse-C-errors		execute-keyboard-macro		physical-tabstop	
parse-LINT-errors		execute-macro		regular-expressions	
quote-char	^Q;	init-bindings		right-margin	
source		name-keyboard-macro		show-match	
string-length	^Xc	print (variable)		scroll-step	
		read-macros-from-file		text-fill	
Aovement (Large)		set-quote-chars		visible-bell	
beginning-of-file	Esc <	set (variable)		write-files-on-make	
beginning-of-window	Esc,	start-remembering	^X(
end-of-file	Esc >	stop-remembering	^X(^X)		
end-of-window	Esc.	write-macros-to-file	A)		
		#110-maci 05-00-me			
goto-line n	Esc n Esc g				
next-page	^V				
previous-page	Esc v				

Notes: ^ alone is the character "^"; prefixing another character, it means "CTRL-". n means an integer. The space which appears after Esc is for legibility only. Some commands (e.g., select-buffer) prompt the user for a value.

Figure 9.5. jove Commands and Cray Default Bindings

The following commands are probably the most frequently used ones, and are sufficient to do a considerable amount of text editing:

- Forward-character and backward-character ([^]f, [^]b; "[^]" represents "CTRL-") move forward and backward one character position in the buffer. At the end of each line of text is a newline character; moving forward across it advances the current position to the beginning of the next line.
- Forward-word and backward-word (Esc-f, Esc-b) are similar to forward-character and backward-character, but move by words (continuous strings of alphanumeric characters).
- Next-line and previous-line (^n, ^p) move by lines.
- Delete-next-character and delete-previous-character ([^]d, [^]h) delete the character immediately before and after the current position.
- Delete-next-word and delete-previous-word (Esc-d, Esc-h) are similar to delete-nextcharacter and delete-previous-character, but delete words or partial words to either side of the current position.
- Escape, followed by a number, followed by a command, executes that command that number of times. For example, Esc-10ⁿ moves down 10 lines.
- Set-mark (^@) marks one end of a region, the other end being the current position. Regions, like characters, words, and lines, are the operands of various commands.
- Delete-to-killbuffer (^x^k) removes all between the mark and the current position, saving it in the killbuffer.
- Yank (^y) inserts a copy of the killbuffer contents at the current position.
- Incremental-search-forward and incremental-search-reverse (^\, ^r) search forward and backward to the next occurrence of the specified string. Accepts regular expressions, if they are enabled.
- Search-forward and search-reverse (Esc-s, Esc-r) prompt for and then search forward and backward to the next occurrence of the specified string. Accepts regular expressions, if they are enabled.
- Query-replace-search (Esc-q) prompts for a search string and replacement string, and then searches for the search string, replacing selected occurrences with the replacement string. At each occurrence, the user is prompted and can respond "yes", "no", "all", "exit", or "recursive". Accepts regular expressions, if they are enabled.

For additional information execute man jove.

9.6 vi

vi is the standard UNIX screen (visual) text editor. ex is an underlying line oriented editor for vi. Its commands, preceded by a colon and followed by a carriage return, may be used from within vi, and are often the only way to accomplish certain tasks within vi. Because of **jove**'s preeminent position at the ARLSCF, little support is available to the user wishing to use vi, and it is emphasized that **jove** is the screen editor of choice at the ARLSCF.

In common with many other screen editors, **vi** must be informed of the type of terminal from which it is being invoked. This is usually effected upon login, but if the screen seems not to respond properly (more likely when dialing in through a modem), ensure that the following actions have occurred, where *name* is the system's own name for the terminal type:

- in the Bourne shell: TERM=name
- export TERM
- in one of the C shells: set term=name

vi is invoked by the command

vi [options] [filenames]

or, for a special verbose mode particularly helpful to the beginner,

vedit [options] [filenames]

The position of the cursor on the screen indicates the position within the file, and changes made are shown more or less immediately on the screen, but are made only to a buffer copy of the file of interest. The buffer copy is saved upon the user's command. vi attempts to preserve buffer contents in the event of a crash or a loss of communication.

vi has rather a large repertoire of commands, many of which are listed in Figure 9.6. That figure is intended as a quick reference summary; space therein prevents the listing of all the details. For example, "dw" is described as "delete word." It is not stated that this means "delete to the right from the current position through the end of the current word, including trailing white space, not including trailing punctuation, but if the current position is white space, delete from the current position through the end of the white space." For additional information execute **man vi** and **man ex**, or see the Cray publications, UNICOS User Commands Reference Manual, SR-2011 6.0, and UNICOS Text Editors Primer, SG-2050.

Initially, and upon return from insert and ex modes, vi is in command mode. Insert mode is selected by entering one of the characters aiAloOcCsSR. It permits the entry of arbitrary text and is terminated normally with Esc or abnormally with ^?. ex mode is entered with Q and permits the use of ex commands as if ex had been invoked, rather than vi; in addition, ex commands may be entered individually from command mode by pre- and postfixing each one with : and RETURN, respectively. vi supports string searches and substitutions using regular expressions. vi options permit the user to modify the manner in which vi responds to certain commands and CTRL- key combinations.

	**	***	
Adjusting the Scre	'en	Movement (Large)	
L; ^R	redraw; eliminating @ lines	^F	forward screen
2 ●; 2 −; 2 .	redraw, current line at top; bottom; center	^B	backward screen
zn.	use n-line window	^D	scroll down half screen
^E	scroll window down 1 line	^U	scroll up half screen
ŶΥ	scroll window up 1 line	Н	1st nonwhite in top line on screen
	-	L	1st nonwhite in last line on screen
File Manipulation		М	1st nonwhite in middle line on screen
:e!•; :e ∫•	start over; edit file f; changes not saved	nG	1st nonwhite in line n (default: last)
:e #•	return to previous file, changes not saved	{	preceding beginning of paragraph
:q•; :q!•	quit; quit, discard changes	Ì	next beginning of paragraph
:w•; :w f•; :w! f•	write edit buffer; to file f; overwrite f	11	beginning of file
:X•	write edit buffer then exit vi		end of file
:n•	edit next file in arglist		
:n <i>args</i> ●		Movement (Small)	
ZZ	write edit buffer then exit vi	+;•	1st nonwhite in next line
		_	1st nonwhite in previous line
Inserting/Modifyir	ng/Deleting Text	d_arrow; j	next line, same column
ateztEsc	append <i>text</i> after cursor	u_arrow; k	previous line, same column
AteztEsc	append <i>text</i> at end of line	n	to column n, default 1
cw <i>text</i> Esc	<i>text</i> replaces current position to end of word		beginning of current line
CtextEsc	text replaces current position to end of line	\$	end of current line
: <i>i,j</i> d∙	delete lines <i>i</i> through <i>j</i>	• •	first nonwhite in current line
ndd	delete n lines starting with current line	r_arrow; l; (space)	
ndu d´x	delete current line through line marked x	l_arrow; h; [^] H	backward one character
	delete current character to end of word	W	next beginning of word or punctuation
dw D	delete current character to end of line	# b	preceding beginning of word or punctuation
i <i>text</i> Esc	insert text before cursor	e	next end of word or punctuation
	insert <i>text</i> before first nonwhite	Ŵ	next beginning of word
ItextEsc J		B	preceding beginning of word
	join line and next line, intervening space	E	next end of word
: <i>i,j</i> m <i>k</i> ∙	move lines i through j to just after k		preceding beginning of sentence
otextEsc	open new line below, insert text		next beginning of sentence
OtextEsc	open new line above, insert text)	liext peginning of sentence
p; "np; "np	put buffer text after cursor or current line		
$\mathbf{P}; \mathbf{nP}; \mathbf{xP}$	put buffer text before cursor or current line	Searching and Subs	tituting
r <i>x</i> R <i>text</i> Esc	<i>x</i> replaces current character <i>text</i> replaces characters, one for one	/string•	next occurrence of string
stextEsc		?string•	preceding occurrence of string
StextEsc StextEsc	<i>text</i> replaces current character <i>text</i> replaces current line	/string - /string	nth line after string
u	undo most recent change to edit buffer	?string?—n•	nth line before string
U		:i,js/81/82/g•	global substitute s2 for s1 in lines i through j
	undo most recent change to current line delete current character		repeat most recent / or ?
x X		n N	repeat most recent / or ?, reverse direction
	delete preceding character	fx	cursor to next x in line
У	yank current character		cursor to preceding x in line
yw	yank current word	Fx	cursor to preceding x in line cursor before next x in line
уу; Ү	yank current line	t <i>x</i>	
y z	yank current line through line marked x	Tz	cursor after preceding x in line
:i,jy•	yank lines i through j	;	repeat last f, F, t, or T
≪;≫	left shift by tabs; right shift by tabs	, ~	reverse last f, F, t, or T
•	repeat most recent edit buffer changing cmd	%	find matching (,), {, or }
3173 U. T /1.	(Masking and Datum	alar
While Inserting/M		Marking and Return	
[^] H	erase preceding character	mx	mark current position with x
^W	erase current word		go to mark z
^U	erase to beginning of insert		go to first nonwhite in z-marked line
$\overline{7}$	quote ^H, ^W, ^U		toggle position between mark and other
Esc	end insertion, back to command mode		toggle position between beginning of marked
^ ?	interrupt, terminate insert	December 21 P	line and other
^D	backtab over autoindent	Escape to Shell	
0^D	kill autoindent for rest of file	:sh•	open subshell
u_arrow^D	kill autoindent for current insert	:! cmd•	run <i>cmd</i> , return
^V	quote nonprinting character	:r!cmd•	run <i>cmd,</i> insert output, return
Miscellaneous		Options (set comma	
Esc	cancel incomplete command	autoindent	continue previous indentation (insert mode)
^C	interrupt command in progress	autowrite	write before changing files
^?	interrupt	ignorecase	ignore case when searching
^G	show current file and line	lisp	(), {} are s-expressions
١	quotes the special characters	list	display ^I for tab, \$ at end of line

set	modify vi's behavior	magic	turn on metacharacter meaning of ., [, *
Q	enter ex mode	noai	turn off autoindent
	addresses current line	noic	turn off ignorecase
\$	addresses last line	nonumber	turn off line numbering
%	addresses all lines	number	number lines
		redraw	redraw screen
		report	threshold for number of lines modified
		scroll	command mode lines
		shiftwidth	set reverse tabbing stop
		showmatch	show the match to) and { when typed
		showmode	show insert mode in vi
		slowopen	stop updates during insert
		window	visual mode lines
		wrapscan	regular expression search wraps around file
		wrapmargin	set margin for text wrap

Notes: ^ alone is the character "^"; with another character, it means "CTRL-".

n means an integer, s a string, x a letter.

• represents a carriage return.

Many commands accept numerical prefixes, with the meaning of line number, range of line numbers, column number, number of lines to scroll, or number of times to repeat the effect of a command.

Line numbers often may be replaced by line numbers relative to the current line (+ or - number), by search strings, or by line markers prefixed with single apostrophes.

Delete and yank (copy) commands do so into the current buffer, whence the text can be recovered. In addition, vi automatically creates nine more such buffers, named 1 through 9, for the nine most recent deletions, the most recent being in 1. In addition, the user can create 26 more such buffers named lower case "a" through "z" by prefixing the delete or yank command with "letter (e.g., "q5dd). Prefixing a "p" or "P" command with "letter-or-number (e.g., "qP) retrieves the contents to the edit buffer.

Figure 9.6. vi Commands

9-12

10. cf77 Compiling System

The entirety of this chapter applies only to the ARLSCF Cray computers.

cf77 is described as a compiling system because it incorporates processing phases before and after the compiler proper (cft77). All the phases except the loader can be said to "compile" Fortran source code, but only the compiler proper produces binary output, which is then processed by the loader to produce an executable program. It is two preliminary phases of the cf77 process that may produce significant improvement in a program's performance. The first one, fpp, analyzes a program to detect dependencies and adds directives for use in later phases. The second one, fmp, translates fpp's output (still essentially Fortran) to enable multitasking, or parallel processing. This automated multitasking capability is called "autotasking."

The action of the loader is suppressed by several cf77 options, in which event the relocatable binary output corresponding to each input file (see *files* at the end of the cf77 options list, following) is default named with the same root name and a .o suffix, or as specified by still another option. When the loader is not suppressed, the executable binary output is default named **a.out**, or as specified by a cf77 option or a segldr option or directive.

The general preprocessor, gpp, is an optional phase of the cf77 system which performs functions formerly done by the C preprocessor, cpp. These include macro substitution, conditional compilation with directives #if, #ifdef, and #ifenddef, and use of #include files. gpp is preferable to cpp because its line numbering scheme is compatible with the other cf77 processing phases. gpp is invoked automatically for input files suffixed with .F instead of .f.

Of itself, the compiler proper (cft77) does not provide the enhanced optimization capabilities of fpp and fmp, nor the convenience of gpp and of automatic invocation of segldr.

Throughout this chapter, a number of commands with options, options with arguments, and arguments are presented. In general, typical UNIX conventions concerning white space, quoting, and metacharacters apply.

Detailed information may be found in the on-line manual pages and in the Cray publications, CF77 Compiling System,

Volume 1: Fortran Reference Manual, SR-3071 5.0 Volume 2: Compiler Message Manual, SR-3072 5.0 Volume 3: Vectorization Guide, SG-3073 5.0 Volume 4: Parallel Processing Guide, SG-3074 5.0

and Segment Loader (SEGLDR) and Id Reference Manual, SR-0066 6.0, and UNICOS Performance Utilitics Reference Manual, SR-2040 6.0.

10.1 cf77: Syntax and Options

cf77 [-Z phase] [-Wd"string"] [-Wu"string"] [-Wf"string"] [-Wa"string"] [-Wl"string"] [-Wp"string"] [-c] [-C[cpu][,hdw]...] [-F] [-g] [-G] [-I incldir] [-J] [-1 lib] [-L dir[,dir]...] [-M] [-N col] [-o outfile] [-S] [-T] [-V] [-V] [-D name[=def]] [-P] [-U sym] [--] files

cf77 Compiling System

- -Z phase Specifies the phases of the cf77 compiling system to be invoked. phase specifies a code generation option. The default is c, activating only the compiler and loader. Arguments p, u, and v can be specified as P, U, and V, in order to save intermediate files from the initial phases of cf77.
 - **p** Activates the entire compiling system. **gpp** processing is invoked or not depending on the input file name suffix, **.f** (not invoked) or **.F** (invoked).
 - v Activates all phases but fmp.
 - u Activates all phases but fpp.
 - c Activates the compiler and loader only (default).
 - m Specifies use of premult (to be removed in cf77 6.0).
- -Wkey"string" Passes a quoted string containing options to the compiling system phase selected by the key letter. Options are expressed in the same format that would be used if that compilation phase were being explicitly invoked by its own command.

key	phase	$\operatorname{command}$
p	generic preprocessor	gpp
d	dependence analyzer	fpp
u	parallel processing translator	fmp
f	Fortran compiler	cft77
a	assembler	as
l	segment loader	segldr

- -c Disables the load step and saves the binary file with a .o ending. The default is to load and then delete the binary file.
- -C[cpu][,hdw]... Specifies mainframe and hardware for which the program is to be compiled. Use of this option is not recommended for alternate cpu choice. Instead, use the **TARGET** environmental variable. See the manuals or execute **man target** for additional information.
- -D name[=def] Interpreted only by gpp. Defines name as by a #define directive. If there is no = def, name is defined as 1. Up to 64 names can be specified, each with its own -D.
- -F Activates the flowtrace feature which permits monitoring of the program during execution. Generates the flow.data file which is read by the flowview utility.
- -g Generates a debug symbol table; equivalent to -Wf''-ez o off''; all -Z options are ignored.
- -G Generates a debug symbol table with no effect on optimization; equivalent to -Wf"-ez", or when -Zv is used, -Wf"-ez" -Wd"-dc -ef".
- -I incldir Names additional directories to be searched in left to right order for files specified by relative names in INCLUDE lines. The directory containing the input file is searched first and is the default. Up to 10 directories can be specified, each with its own -I. When used with gpp, -I applies to the **#include** files with relative names. Thus, **#include** files whose names are enclosed in "" are first searched for in the directory of the input file, then in directories specified by -I, and finally in the standard directories. For **#include** files enclosed in <>, the directory of the input file is not searched.
- -J Processes Fortran programs through **fpp** and/or **fmp** without compilation and creates output files with .j or .m suffix, respectively. -Zp or -Zu, respectively, also must be specified.
- -1 *lib* Identifies library files. If the library name begins with . or /, it is used without modification; else, directories in the directory search list (default: /lib, /usr/lib) are searched for file libname.a.

-L dir[, dir]... Prepends the directory search list with the named directories.

- -M Processes the Fortran program through fpp and leaves the modified files with a .m suffix. If -Z is not specified, -Zp is assumed.
- -N 72 80 Specifies 72- or 80-column wide source code lines. Default: 72.
- -o outfile Overrides default output file name **a.out**. This option is interpreted by the loader and does nothing if binary is saved by -c or by -Wf"-b file".
- -P Only gpp is invoked, and output is placed in file.i (root name from file.F).
- -S Generates Cray Assembly Language (CAL) output in *file.s* (root name from *file.f*); equivalent to -Wf"-eS".
- -T Disables the entire compiling system but displays all options currently in effect for each system phase. Same as -v option but with no processing.
- -U sym Interpreted only by gpp. Removes any initial definition of reserved symbol name sym that is predefined to gpp, as by an #undef directive. Up to 64 symbols can be specified, each with its own -U.
- -v Indicates each phase of the compilation system as it is encountered and displays its options and arguments. Output written to stderr (typically the screen), not to stdout or the listing file.
- -V Activates an option of the same name on each phase of the compiling system. The compiler reports compilation time and statistics, and system version. Information is sent to stderr (typically the screen) and to the listing file.
- -- Signifies the end of the options; input file names follow.
- files Names of input files containing Cray Fortran source code. Names must be suffixed .f or .F. The .F suffix indicates that the file is to be preprocessed by gpp (if active).

10.2 cf77: Environmental Variables

The following environmental variables are a part of the execution environment and affect the cf77 system:

CAL	Contains the file name for the CAL assembler; default is $/bin/as$.		
CFT77	Contains the file name for the Fortran 77 compiler; default is /bin/cft77.		
FMP	Contains the file name for the fmp translator; default is /bin/fmp.		
FPP	Contains the file name for the fpp dependence analyzer; default is $/bin/fpp$.		
SEGLDR	Contains the file name for the segment loader; default is /bin/segldr.		
NCPUS	Contains the number of CPUs available to work on a program; default is the number of physical CPUs on the machine.		
NPROC	Contains the number of processes used for simultaneous compilations; default is 1.		
PREMULT	Contains the file name for the microtasking preprocessor (to be removed in cf77 6.0); default is /bin/premult.		

10.3 cf77: Default Files

The input, output, and intermediate files used by cf77 follow. file is the user-selected root name.

file .a	Library file.
file. f	Fortran source file.
file.F	Fortran source file to be preprocessed by gpp .
file .s	Assembly language file.
file .0	Object file.
file.j	Output file from fmp .
file.l	Fortran listing file.
file.m	Output file from fpp .
a.out	Default name of executable output file.

10.4 cft77 Compiler

Correct use of cf77 requires an understanding of cft77, which is the compiler proper invoked by cf77, and which can be invoked explicitly. Options specified below are presented to cf77 as *options* within -Wf" options", or they may be presented to an explicit invocation of cft77. Use of cf77 is recommended, rather than explicit invocation of cft77.

10.4.1 cft77: Syntax and Options

cft77 [-a alloc] [-A adrmode] [-b binfile] [-c cifopts] [-C cpu,hdw] [-d offstring] [-D cdirlist] [-e onstring [-i intlen] [-I inlname] [-1 listfile] [-m msglev] [-M msglist] [-N col] [-0 optim] [-P incldir] [-R runchk] [-s calfile] [-t trunc] [-V] files.f

Defaulting on all the options is equivalent to:

```
cft77 –astatic –Afull –bfiles.0 –Chost-characteristics –dacdfghijmnoPsSuvwxz
–eBpqr –i46 –m3 –N72
```

-o noagress,bl,noinline,nokernsched,noloopalign,recurrence,norecursive,scalar,vector, vsearch,nozeroinc (normal UNIX continuation of preceding line)

-Padditional-INCLUDE-directories files.f

- a alloc	Selects memory allocation scheme static or stack. static causes all memory to be statically allocated; that is, any variable allocated to memory occupies the same address throughout program execution. If stack is selected, read-only constants and variables in DATA and SAVE statements, and COMMON blocks, are static; all other variables are stack (their storage location may be used by other entities). Default: static.
−A adrmode	elects addressing mode full or fast on a Cray X-MP EA system equipped with extended memory hardware. Default: full .
-b binfile	Creates file <i>binfile</i> for the binary load modules. Disabled by $-dB$, $-eS$, and $-s$. Default: <i>file.o</i> , root from <i>file.f</i> .

.

-c cifopts	Creates compiler information file, file. T (root from file.f), containing information for use with programming tools which will be available in UNICOS 7.0. See the Cray publication, Compiler Information File (CIF) Reference Manual, SM-2401 1.0, for detailed information. Default: none.		
-C [cpu][,hdu	v_1 Same as the $-C$ option for cf77, but effective only during compilation. See the manuals or execute man target for additional information. Default: host characteristics.		
$-\mathbf{d}$ offstring	Disables the compiler functions specified in <i>offstring</i> . These compiler functions are listed in the following section. Default: $-dSacdfghijmnosuvxz$; Cray-2 also Pw .		
-D cdirlist	Disables comma-separated compiler directives in <i>cdirlist</i> . Default: all enabled except INLINE and NOINLINE are disabled unless inlining is activated; see $-I$ and $-o$, following.		
-e onstring	Enables the compiler functions specified in <i>onstring</i> . These compiler functions are listed in the following section. Default: $-eBpqr$		
-i 46 64	Specifies 48- or 64-bit integer arithmetic. Default: 46.		
—I inlname	Activates explicit inline code expansion within programs contained in file or direc- tory <i>inlname</i> . Default: not activated.		
-1 listfile	Creates file <i>listfile</i> to receive listing output enabled by $-e$ options c, g, m, s, x and by the LIST and CODE directives. Default: <i>file.l</i> , from <i>file.f</i> .		
-m msglev	Specifies the lowest level messages to be issued. Message levels are:		
	0 Comments 1 Notes		
	 2 Caution messages 3 Warning messages, default 4 Error messages 		
-M msglist	Disables messages by comma-separated message numbers in <i>msglist</i> . Default: none.		
–N 72 80	Specifies 72- or 80-column wide source code lines. Default: 72.		
–o optim [,op	tim] Specifies code optimizations to be performed during compilation. Optimiza- tion codes are listed in the second following section.		
−P incldir	Names additional directories to be searched in left to right order for files specified by relative names in INCLUDE lines. The directory containing the input file is searched first and is the default. Up to 20 directories can be specified, each with its own $-\mathbf{P}$.		
-R. runchk	Specifies run-time checks. <i>runchk</i> is a concatenation of the desired ones of:		
	 a Compare number and type of arguments passed to procedures with number and type expected. b Check subscripts against array bounds. c Check conformance of arrays in array expressions. Default: none. 		
−s calfile	Places CAL output in file <i>calfile</i> . Suppresses loadable binary output. Default: none, or <i>file</i> .s with $-eS$.		
-t trunc	Replaces rounding of arithmetic results with truncation of the least significant <i>trunc</i> bits; $trunc < 48$. Double-precision variables, function results, and constants are not affected. Default: rounding.		
$-\mathbf{V}$	Provides compilation summary information to file stderr and to listing file if any. Default: information not provided.		

	End of options.	
files.f	Names of the source files.	Required.

10.4.1.1 Arguments for -d and -e, Disable and Enable

Option	Default	Description
В	—е	Creates binary object file; no CAL file created.
P	_d	Cray-2 only; local memory paging.
S	d	Generates CAL file to file.s.
а	$-\mathbf{d}$	Aborts compilation after first fatal error.
с	$-\mathbf{d}$	Permits common block cross reference listing.
d	$-\mathbf{d}$	Generates debug table; –ez preferred.
f	$-\mathbf{d}$	Generates flowtrace output; cf77 –F preferred.
g	$-\mathbf{d}$	Generates listing of binary output with CAL equivalent.
ĥ	$-\mathbf{d}$	Lists only the first statement and the error messages in each program.
i	$-\mathbf{d}$	Causes a runtime error when an uninitialized local variable is used in a
		floating point operation or in array subscripting.
j	$-\mathbf{d}$	Executes at least one iteration of DO loop if its DO statement is executed.
\mathbf{m}	$-\mathbf{d}$	Enables loopmarked listing of source code to listing file; see $-l$, preceding.
n	$-\mathbf{d}$	Generates messages for all nonstandard usages.
ο	$-\mathbf{d}$	Generates code for runtime checks of array conformance and subscripts
		versus array bounds; equivalent to $-\mathbf{Rbc}$; to be removed in cft77 6.0.
Р	$-\mathbf{e}$	Allows double precision. $-dp$ causes double precision entities to be com-
		piled as single precision, and double complex entities (which otherwise
		cause a fatal compilation error) to be compiled as complex.
q	$-\mathbf{e}$	Aborts compilation when 100 fatal errors are encountered.
Г	—е	Rounds multiplication results, overriding $-t$. Cannot be disabled on
		Cray-2.
S	-d	Enables listing of source code to listing file; see -1, preceding.
u	d	Permits special rounding of real division results.
v	-d	Causes all variables in all program units to be treated as though they
	,	appeared in a SAVE statement.
w	-d	Cray-2 only; to be removed in $cft77$ 6.0; same as P argument.
x	-d	Permits cross reference listing.
Z	-d	Permits use of debugging tools by generating debug table.

10.4.1.2 Arguments for -o, Optimization

10 - 6

The optimization option has form -olist, where *list* is a comma-separated list of desired arguments. The arguments exist as pairs, to enable or disable various features. Each pair except one is of form *feature* and no*feature*. The exception is on, off.

aggress	Causes the compiler to increase certain internal limits, thus allowing some loops to be vectorized which otherwise would not have been. Default: noaggress .
bl	Permits full bottom loading of scalar operands in loops. Default: bl.
$\operatorname{inline}[n]$	Activates automatic inline code expansion for called subprograms. n is 1 (default), 2, or 3, indicating the number of levels to be inlined. Default: noinline.
kernsched	Cray-2 only. Causes compiler to use polycyclic scheduling for small kernel loops to increase parallelism. Default: nokernsched .
loopalign	Causes the compiler to attempt to align DO and DO WHILE (nonstandard) loops on buffer boundaries to decrease overhead. Default: noloopalign .

recurrence	Permits the vectorization of reduction loops. Default: recurrence.		
recursive	Causes the compiler to assume that all subprograms have direct or indirect recursion. Default: norecursive .		
scalar	Permits scalar optimization and associated directives. Default: scalar.		
vector	Permits vectorization and associated directives. Default: vector.		
vsearch	Permits vectorization of search loops. Default: vsearch.		
zeroinc	Causes the compiler to assume that constant increment variables might be incremented by 0, requiring generation of conditional vector code. Default: nozeroinc .		
off	Turns off all optimization. Default: on .		

10.4.2 cft77: Compiler Directives - CDIR\$

Compiler directives provide a means to enable and disable particular compilation features from within the source code; thus, they provide a means for limiting features to portions of subprograms. Compiler directive lines are identified by CDIR\$ in columns 1 through 5 and a blank in column 6; thus, they appear to other Fortran compilers as comments. The directive itself occupies columns 7 through 72 (or 7 through 80 with -N80). A line may contain multiple directives, except that directives with lists must be on lines by themselves. With the exceptions of EJECT, LIST, and NOLIST, directives must not appear outside of a program unit. Unless otherwise stated, the effect of a directive terminates when the end of a program unit is encountered, or when a directive with the opposite sense is encountered. *list* indicates a commaseparated list of the entities of interest.

10.4.2.1 Output Directives

- CODE/NOCODE Similar to LIST/NOLIST but pertains to the generated binary object code (not CAL listing). The last directive encountered controls the entire program unit.
- **EJECT** Inserts a page break at the corresponding point in the otherwise enabled source listing.
- LIST/NOLIST Starts and stops source listing. Overrides command line options.

10.4.2.2 Vectorization Directives

- IVDEP[SAFEVL=n] Causes the compiler to ignore vector dependencies when the vector length is at least *n*, default all vector dependencies. Applies to the first **DO** or **DOWHILE** loop, or array syntax assignment, following the directive and in the same program unit.
- NEXTSCALAR Suppresses vectorization of following DO or DO WHILE (nonstandard) loop.
- **RECURRENCE**/NORECURRENCE Toggle on and off otherwise enabled vectorization of reduction loops; directives override **-o recurrence** but not **-o norecurrence**. A reduction loop reduces an array to a scalar value by doing a cumulative operation on all of the array's elements; this involves including the result of the previous iteration in the expression of the current iteration.
- **SHORTLOOP** Declares that a loop has a trip count less than 64, thereby eliminating the need for code to test for completion of that loop. Applies to the first **DO** or **DOWHILE** (nonstandard) loop following and in the same program unit as the directive. Effective only in vectorized loops.

VECTOR/NOVECTOR Toggles on and off otherwise enabled vectorization.

VFUNCTION *list* Indicates that the listed external functions have vector versions.

VSEARCH/NOVSEARCH Toggles on and off otherwise enabled vectorization of search loops. A search loop is a loop which can be exited by means of an IF statement.

10.4.2.3 Scalar Optimization Directives

- ALIGN Aligns a block of code on an instruction buffer boundary. Aligning dominant loops which can fit within one instruction buffer can decrease overhead.
- **BL/NOBL** Toggles between full and safe bottom loading within loops for which bottom loading is otherwise permitted.
- NO SIDE EFFECTS *list* Declares that listed subprograms do not redefine their arguments, variables in common blocks, and variables local to their calling program. Permits register storage across subprogram calls. Not needed for INTRINSICs and VFUNCTIONS.
- **SUPPRESS** [*list*] Suppresses scalar optimization at the point where the directive occurs. Variables in registers are stored to memory, whence they are read at their next reference. *list* restricts the effect of the directive to the named arrays.

10.4.2.4 Storage Directives

- **AUXILIARY** *list* Allocates listed arrays and common blocks to the solid-state storage device. Not available at the ARLSCF.
- **REGFILE** [*list*] On the Cray-2 only, assigns named common blocks to local memory. The directive must occur before the first executable statement in the program unit.
- STATIC/STACK Select STATIC or STACK allocation for local data. Override -a. The last occurrence within a program unit is effective for the entire unit.

10.4.2.5 Other Directives

- BOUNDS [list]/NOBOUNDS [list] Toggle on and off the checking of subscripts against array boundaries. Appear after all specification statements. Override -Rb. list restricts the effect of the directive to the named arrays.
- FLOW/NOFLOW Turn flowtrace on and off. Override -ef and -df. The last occurrence within a program unit is effective for the entire unit.
- INLINE/NOINLINE Toggle on and off inline code generation when inlining is enabled by -I or -o inline.
- INTEGER=46|64 Selects 46- or 64-bit integers. Overrides -i. The last occurrence within a program unit is effective for the entire unit.
- **TASKCOMMON** *list* Declares the listed named common blocks to be local to a single multitasking task. Makes independent copies of listed blocks used by more than one task. The directive must occur before the first executable statement in the program unit, and common blocks so identified in any program unit must be so identified in all program units wherein they appear.

10.5 segldr Loader

segldr is the loader invoked by cf77. Its options, specified in the following section, are presented to cf77 as options within -Wl"options", or they may be presented to an explicit invocation of segldr. Use of cf77 is recommended, rather than explicit invocation of segldr.

Beginning at the main program in the calling tree, **segldr** links together the needed relocatable binaries to produce an executable binary. The relocatable binaries are selected first from the object (.o) files named in *objfiles*, and then from user-supplied libraries (-1 option), and then from the default libraries. The object files may have been generated by the compilers (e.g., cft77, cc) or the assembler, or have been extracted from libraries by bld or **ar** (bld is recommended). User libraries are searched in the order in which they are listed. Directories named in the directory search list (-L option; defaults are /lib followed by /usr/lib) are searched in order for user-specified libraries. In the event of multiple occurrences of needed entry point names, the first one encountered is accepted, the others being ignored. The default library set is: libc.a, libf.a, libio.a (Cray X-MP only), libm.a, libp.a, libsci.a, and libu.a.

10.5.1 segldr: Syntax and Options

$\mathbf{segldr} \ [-\mathbf{a}] \ [-\mathbf{A} \ file] \ [-\mathbf{b} \ value] \ [-\mathbf{D} \ dirstring] \ [-\mathbf{e} \ name] \ [-\mathbf{E}] \ [-\mathbf{f} \ value] \ [-\mathbf{F}] \ [-\mathbf{g}] \ [-\mathbf{H} \ hi[+he]]$
[-i dirfiles] [-j names] [-k] [-l names] [-L ldirs] [-m] [-M arguments] [-n] [-N]
[-o outfile] [-O keyword] [-s] [-S si[+se]] [-t] [-u unames] [-V] [-z] [-Z] objfiles

-a Aligns all code blocks and local data blocks on instruction b	buffer boundaries.
--	--------------------

- -A file Identifies file as an existing executable to which relocatables and library extractions will be linked.
- -b n Adds n, 1024 word blocks to the BSS space of the loaded program.
- -D list Provides a semicolon-separated list of segldr directives. segldr processes these directives before any directives files.
- -e ename Indicates that program execution is to begin at entry ename.
- -E Echoes to the load map all directives processed.
- -f keyword Sets all uninitialized data to one of the following keyword selected values, or to the actual value specified.

	zeros	All bits set to 0 (default).
	ones	All bits set to 1.
	indef	0605054000000000000000 octal, to cause a floating-point error if used in a floating-point operation.
	-indef	Same as indef , but with the leading bit on.
	indefa	Result of a logical OR operation of 0605054000000000000000 octal and the address of the word being preset.
	—indefa	Same as indefa, but with the mask's leading bit on.
	value	value, where value is a 16-bit octal number between 0 and 177777, inclusive; value is replicated four times in the 64-bit word.
$-\mathbf{F}$	Forces the loading of all modules in the named object files, even if not referenced.	
-g	Generates the debug symbol tables and appends them to the executable file. Enabled by default, disabled by $-s$.	

-H hi[+he] Assigns the initial heap size (hi) and the heap expansion increment (he).

- -i list Causes the directives in each of the directives files in list to be read. represents stdin.
- -j list A comma-separated list of directives file names. A name beginning with "." or "/" is assumed to be a complete path name; otherwise, **segldr** looks for file **segdirs**/name in the search directories.
- -k Redirects all but summary class error messages to the load map file.
- -1 list A comma-separated list of library file names. A name beginning with "." or "/" is assumed to be a complete path name; otherwise, **segldr** looks for file libname.a in the search directories.
- -L list Adds the listed directories to the beginning of the directory search list. Not for the faint hearted. Default list is /lib, then /usr/lib.
- $-\mathbf{m}$ Same as $-\mathbf{M},\mathbf{a}$.
- -M [file] [, opts] Names the load map file for paginated 132-column output (default: stdout, unpaginated, 80 columns) and the type of map to produce. The load map options are:
 - s Lists only load statistics.
 - a Sorts block map by address. The default.
 - al Sorts block map by name.
 - **b** Restricts block map to objects from *objfiles*.
 - c Lists common block cross-references.
 - e Lists entry point cross-references.
 - p a and al.
 - f All the above.
- -n Generates a shared text program on the Cray X-MP.
- -N Inhibits inclusion of the default libraries in the load.
- -o outfile Writes the executable program to outfile. Defaults to the name specified in an ABS directive, or to a.out.
- -O keyword Selects memory allocation order according to keyword.

- mc All module local blocks first.
- tdb All code first, then all initialized data, then all uninitialized data.
- ema Allocates code to maximize usage of extended memory addressing on the Cray X-MP.
- s Allocates code to create a shared text program for the Cray X-MP.
- **ss.ema** Allocates code to create a split-segment program to maximize use of EMA on the Cray X-MP.
- ss.tdb Allocates code to create a split-segment program, with code first, then initialized data, then uninitialized data.
- -s Inhibits the generation of debug symbol tables.
- -S si[+se] Assigns the initial stack size (si) and the stack expansion increment (se).
- -t Trial mode. segldr scans all object modules, checks errors, and generates load maps, but produces no executable program.
- -u unames Enters unames as undefined entry names. Useful to force loading of desired routines from a library.
- -V Writes **segldr**'s version line to stderr.
- -z Specifies an alternate default directives file. The alternate directives must configure the program correctly for execution under UNICOS.

- -Z Inhibits reading of the default directives file /lib/segdirs/def_seg, which is required for correct loading under UNICOS. Special purpose programs only.
- objfiles
 A blank-separated list of file names suffixed with .o to be loaded, file names suffixed with .a to be processed as libraries, and names of ASCII files containing directives.
 -i is recommended for specifying directives files; -l, for libraries.

10.5.2 segldr: Loader Directives

segldr directives provide the ability to restrict the effect of certain **segldr** options to certain portions of the files being loaded, and provide certain capabilities (e.g., segmentation) not available through **segldr** options. **segldr** directives may be input on the command line via the -D option, or they may be listed in a file named on the command line. They are separated by newlines or by semicolons. The form of all **segldr** directives is

DIRECTIVE [= option1[, option2[,...]]]

Of the approximately 60 directives, some of the more commonly used ones follow:

ABS	Names file to receive the executable program.
BIN	Names .o and .a files to be searched for needed elements.
*	Indicates a comment.
CPUCHECK	Checking of machine characteristics turned ON (default) or OFF.
DEFDIR	Replaces the default directory search list (/lib, then /usr/lib).
DEFLIB	Adds libraries to the end of the default list.
DUPENTRY	Specifies the severity level of messages for duplicated entry point errors.
DUPLOAD	Specifies the severity level of messages for common block initialization by more than one module.
ЕСНО	Printing of directives turned ON or OFF (default).
INCLUDE	The named directives file is processed immediately.
LIB	Names additional files to be searched for needed entry points.
LIBDIR	Adds names to the beginning of the system's directory search list for libraries and directives files.
MAP	Specifies which load maps are to be produced.
MLEVEL	Specifies the lowest level segldr message to be printed (default: caution).
MSGLEVEL	Specifies severity level for specific messages.
NODEFLIB	Ignores all default libraries.
NODUPMSG	Suppresses duplicate entry point messages for specific entry points.
NOUSXMSG	Suppresses unsatisfied external messages for specific externals.
PRESET	Specifies a value used to preset uninitialized data areas.
REDEF	Specifies the severity level of messages for redefined common block errors.
SYMBOLS	Generation of debug symbol table turned ON (default) or OFF.
SYSTEM	Selects the target operating system on which the program will execute.
TRIAL	All object modules are scanned, errors checked, and load maps generated, but no exe- cutable code is produced.

USX Specifies the severity level of messages for unsatisfied external errors.

10.5.3 segldr: Environment Variables

The **segldr** command processes the following five environment variables:

- **SEGLDR** Contains one or more strings separated by semicolons where each string is a **segldr** directive or the name of a file containing **segldr** directives.
- **TMPDIR** Specifies the directory that the loader uses for its temporary file. The default directory may be specific to each system.
- LPP Specifies the number of lines to print on each page of listing output. Number must be between 15 and 999, and the default is 57.
- MSG_FORMAT Describes a format specification similar to that of the C library routine printf; this specification can be used to alter **segldr** error message displays.
- **NLSPATH** Specifies a list of alternate directories that the loader should search for its error message catalog. It is used to select alternate catalogs for debugging, or when different versions of **segldr** are operating on the same system. **NLSPATH** is not needed for normal operations.

10.6 Some Nondefault Libraries

DISSPLA 11.0 libraries (Cray X-MP), in /usr/local/disspla11/lib

libdcc.a	(Calcomp Interface)
libdis77.a	(Utility Routines)
libgks.a	(GKS)
libint.a	(Driver Interface)
libp vi.a	(PVI Interface)

DISSPLA 10.0 libraries (Cray-2), in /usr/local/lib/disspla.10

dcclib.a	(Calcomp Interface)
dislib.a	(Utility Routines)
gkslib.a	(GKS)
intlib.a	(Driver Interface)
pvilib.a	(PVI Interface)

Math libraries, in /usr/local/lib

libimsl.a	(IMSL library)
libcm.a	(NIST Math Library)

BRL-CAD libraries, in /usr/brlcad/lib

libcursor.a	libnurb.a	librt.a
libfb.a	liborle.a	libsysv.a
libfft.a	libpk g.a	libtermio.a
libfont.a	libplot3.a	libwdb.a
libmalloc.a	librle.a	

11. Fortran I/O

This chapter presents an overview of certain features of ANSI Standard Fortran 77 I/O operations as implemented on the ARLSCF Cray computers running under UNICOS release 6.1, and also of certain Cray extensions (not ANSI standard) to Fortran 77 I/O, some of which correspond to ANSI Standard Fortran 90 usage. Extensions to or variations from the 77 standard are so indicated. Because the use of non-standard features diminishes the portability of Fortran code, it is recommended most strongly that non-standard features not be used, unless significant benefits accrue through their use. A more complete discussion, and additional features, can be found in chapters 7, 8, and 9 of the Cray publication, CF77 Compiling System, Volume 1: Fortran Reference Manual, SR-3071 5.0, and in the Cray publications, Segment Loader (SEGLDR) and Id Reference Manual, SR-0066 6.0, UNICOS File Formats and Special Files Reference Manual, SR-2014 6.0, Volume 1: UNICOS Fortran Library Reference Manual, SR-2079 6.0, and UNICOS I/O Technical Note, SN-3075 6.0.

Throughout this chapter, except at the end, where they are discussed, those entities called *internal files* are entirely ignored. Accordingly, *file* always means *external file*, except at the end of this chapter.

A remark must be made concerning the major software systems pertinent to this chapter. The ARLSCF Cray computers run UNICOS, release 6.1. The Fortran dialect is Cray Fortran release 5.0. At the writing of this chapter, the file system in use is release 5, with installation of the release 6 file system pending. The choice of file system is almost, but not quite, transparent to the Fortran programmer. Such differences are identified as they are encountered in this chapter.

11.1 Files

A file is a structured collection of information, created in, maintained in, and removed from external (typically disk) storage by the operating system. UNICOS files are created as *permanent* files; unlike some other operating systems, UNICOS creates no *temporary* files which must explicitly be made permanent lest they disappear.

11.1.1 Formatted/Unformatted

A formatted file consists of ASCII characters and can be viewed more or less directly, as on a terminal screen or line printer. It can be manipulated by any of a multitude of UNICOS utilities to accomplish tasks such as horizontal or vertical cut and paste, searching, sorting, counting, and editing. An unformatted file consists of binary data and cannot be viewed directly, nor can intuitive tasks like those just mentioned be performed directly thereon.

11.1.2 Sequential/Direct

A sequential file can be thought of as information stored on magnetic tape. When the file is positioned at some datum, some other datum can be accessed only by traversing all the intervening data. Data in a *direct* file can be accessed in any order, without traversing intervening data.

11.1.3 Records

Files consist of *records*. A record is the smallest entity which can be manipulated by a Fortran I/O statement. A formatted record is a series of characters, typically a line, with length equal to the number of characters therein. Fortran formatted record maximum lengths are restricted[†] to a default maximum length of 267 characters on the Cray X-MP and to 1024 characters on the Cray-2. These maximum lengths can be further restricted by the physical characteristics of the specific hardware devices which serve as source or destination of the record. Except for restrictions imposed by hardware devices, the default maximum record lengths may be increased on the Cray-2 by invoking the WNLLONG subroutine (see the Cray publication, *Volume 1: UNICOS Fortran Library Reference Manual*, SR-2079 6.0), and on the X-MP by using segldr directives. For example, to increase the maximum length of a formatted input record to 384 characters, and of a formatted output record to 522 characters, on the X-MP, use the following directives. Note that the COMMONS directives specify values greater by exactly 9 than the desired maximum lengths.

> SET=\$WBUFLN:522 COMMONS=\$WFDCOM:531 SET=\$RBUFLN:384 COMMONS=\$RFDCOM:393

Each formatted record ends with a newline character^{\dagger} (octal 012), which is not included in the record's character count.

Unformatted records are not constrained to a maximum length, except by hardware.[†] Their lengths are measured in words for noncharacter data or bytes for character data. Complex and double precision data require two words per datum. A character datum of length *len* requires ((len-1)/8)+1 words. Other data types require one word per datum.

11.1.4 Multifile Files

UNICOS supports multifile files on the Cray X-MP but not on the Cray-2. A multifile file is referred to by name as a single file, but it contains embedded end-of-file (EOF) records. Such records can be written by the Fortran ENDFILE statement and detected by the READ statement. Only unformatted files can be multifile files.

11.2 Files and Unit Identifiers

A Fortran program obtains information from, or sends information to, a file by executing one of several data transfer statements (members of the set of I/O statements), the more commonly used ones being:

READ WRITE PRINT BUFFER IN[†] BUFFER OUT[†] READMS[†] WRITEMS[†]

† Not ANSI standard.

An I/O statement references a file by a *unit identifier*, and the operating system, by a *filename* or some other method. A unit identifier is a nonnegative integer expression, or an "*". The filename follows normal UNIX syntax and can be the file's name, the file's relative path name, or the file's full path name, as appropriate. UNICOS file system release 5 permits filenames up to 14 characters long and path names up to 128 characters long. UNICOS file system release 6 permits filenames up to 256 characters long and full path names up to 1023 characters long. As an example of "some other method," UNICOS can reference its system input, system error, and system output files (commonly known as stdin [standard in], stderr, and stdout) even though these files are *unnamed*.

For an I/O statement to be able to reference a file, the unit identifier and the filename must somehow be associated with each other, connected to each other, or **OPENed**. All of these terms, at least in practice on the ARLSCF Crays, are equivalent. Certain portions of the following discussion concerning file opening, connection, and existence may differ somewhat from the ANSI standard, but the discussion is in accord with the realities of Fortran computing on the Cray computers at the ARLSCF.

The most direct method for a Fortran program to open a file is by use of the OPEN statement, a simple form of which is, for example

OPEN (8,FILE='myfile')

This particular statement associates unit 8 with file "myfile" in the directory from which the Fortran program is executed. Because all other values which might have been specified within the parentheses have been defaulted, the unit and file are **OPEN**ed for sequential, formatted output, and the file is positioned in such a way that its first[†] record is ready for access.

Note that nothing has been said about the various UNICOS permissions which obtain for the file directly (owner, group, other) and by virtue of its location in a hierarchy of UNICOS directories. It is the responsibility of the person executing the program to ensure that these permissions are appropriate to the intended use of the file.

11.3 The OPEN Statement

The OPEN statement is used to establish or alter a connection between a unit and a file, creating the file if necessary. Its effect is global. Its syntax is as follows. "[]" indicate optional items. Order of the various items is immaterial, except that u must be first if UNIT = is not present. Values are provided as expressions (constants, symbolic constants, variables, array elements, function references, and combinations thereof) of the appropriate type. If the file already exists, the characteristics specified, explicitly or by default, must be appropriate to the file.

OPEN ($[UNIT=]u$	u is the desired unit designator; 0–99. [†]
[,FILE=fn]	<i>fn</i> is the desired filename; defaults to fort. u ; [†] of type character.
[, STATUS = sta]	sta is 'OLD' to specify an existing file; requires FILE=fn.
	'NEW' to specify a nonexisting file, which will be created;
	requires FILE=fn.
	'UNKNOWN' to specify either an existing or a nonexisting
	file; the default.
	SCRATCH to specify an unnamed, previously nonexisting,
	file which will exist no longer than until program
	termination; $FILE = fn$ not permitted.

[†] Not ANSI standard.

[,IOSTAT=ios]	<i>ios</i> is the name of a type integer storage location into which will be placed the error status of the OPEN upon its termination.
[,ERR=sl]	sl is a statement label to which control will be transferred if an error occurs during the OPEN ; default is the system's own error handling.
[,FORM=fm]	fm is 'FORMATTED' or 'UNFORMATTED' to specify the type of data transfer for which the connection is made; default is 'FOR- MATTED' for 'SEQUENTIAL' access or 'UNFORMATTED' for 'DIRECT' access.
[,ACCESS=acs]	acs is 'SEQUENTIAL' for sequential access or 'DIRECT' for direct access; default is 'SEQUENTIAL'.
[,RECL=rl]	rl is the record length in bytes of the records in a 'FORMATTED' or 'UNFORMATTED' 'DIRECT' access file; of type integer.
[,BLANK=blnk]	<i>blnk</i> is 'NULL' to ignore blanks in numeric input fields (except that an entirely blank field is interpreted as zero) or 'ZERO' to treat non- leading blanks in numeric input fields as zeroes; default is 'NULL'.
$[,POSITION=p]^{\dagger}$	 applies only to 'SEQUENTIAL' files. p is 'REWIND' to initially position the file at its beginning. 'APPEND' to initially position the file at its end, just before the EOF record. 'ASIS' to leave an existing file at its most recent position; equivalent to 'REWIND' if the hardware device does not retain the current position across I/O statements, or if the current position is undefined, which is the case after a CLOSE; the default.
$[,ACTION=acn]^{\dagger}$	acn is 'READ' to prevent writing to the file or 'WRITE' to prevent reading from the file or 'READWRITE' to prevent neither; defaults to the file permissions.
$[,DELIM=dlm]^{\dagger}$	dlm is 'APOSTROPHE', 'QUOTE', or 'NONE' to specify the character to be used as a delimiter for type character constants in namelist [†] or list-directed I/O; default is 'NONE'.
$[,\mathbf{PAD}=pad]^{\dagger}$	pad is 'YES' or 'NO' to specify whether formatted input is padded on the right with blanks when it is shorter than the format specification.

11.4 The CLOSE Statement

The **CLOSE** statement is used to break a connection between a unit and a file, allowing a formerly connected file to be connected to some other unit, a formerly connected unit to be connected to some other file, or the unit and file to be reconnected to each other with the same or different connection characteristics. Its effect is global. Its syntax is as follows. "[]" indicate optional items. Order of the various items is immaterial, except that u must be first if **UNIT** = is not present. Values are provided as expressions (constants, symbolic constants, variables, array elements, function references, and combinations thereof) of the appropriate type.

)

[†] Not ANSI standard.

```
u is the desired unit designator; 0-102^{\dagger}; 100-102 have no effect.<sup>†</sup>
CLOSE ( [UNIT=]u
            [,STATUS=sta] sta is 'KEEP' to specify that the file associated with unit u continues
                                                in existence after being CLOSEd; the default for non-
                                                'SCRATCH' files; must not be used with
                                                'SCRATCH' files.
                                      'DELETE' to specify that the file associated with unit u ceases
                                                   to exist after being CLOSEd; the default for
                                                    'SCRATCH' files.
                                ios is the name of a type integer storage location into which will be
            [.IOSTAT=ios]
                                placed the error status of the CLOSE upon its termination.
                                sl is a statement label to which control will be transferred if an error
            [,ERR=sl]
                                occurs during the CLOSE; default is the system's own error handling.
          )
```

11.5 Connections

The maximum number of files which can be open simultaneously per process is 60 on the Cray X-MP and 100 on the Cray- $2.^{\dagger}$ Standard input, standard output, and standard error are always open and do not contribute to the count of open files. cft77 supports units $0-102^{\dagger}$ and *.

Units $0-102^{\dagger}$ and * are preopened for formatted sequential I/O as follows, the * connection depending upon whether the * appears in an input or an output statement.

٠.

unit	hle
*, 5, 100	standard input
*, 6, 101	standard output
0, 102	standard error
other u	fort.u

~ 1

A "preopened" file is one which, without the OPEN having been executed, is nevertheless connected to a particular unit. The connection has certain characteristics, just as if the program had executed an appropriate OPEN statement. Standard input, standard output, and standard error cannot be connected to units other than those specified because they are *unnamed* files, and so there is no way for a Fortran program to associate them with other units. Unit * is the preferred unit for referencing standard input and standard output because the association is defined within the ANSI standard. Units *, 100, 101, and 102 cannot appear in OPEN statements, nor can their connections be altered in any way. The connections for units 0, 5, and 6 can be altered, broken, and reestablished, or even broken and the units then connected to some other file.

An OPEN statement whose unit is not currently connected to some user-specified file (by virtue of an earlier OPEN statement) and which does not include the FILE= specifier, automatically refers to file fort.u, where u is the unit number, except that if the unit number is 5, 6, or 0, then the file referred to is standard input, standard output, or standard error, respectively. If necessary, file fort.u is created with size 0 upon execution of the OPEN.

An OPEN statement whose unit is currently open and which references the file connected to that unit (by default or explicitly with a FILE= specifier) can change only the value of the BLANK= specifier.

[†] Not ANSI standard.

An **OPEN** statement whose unit, u, is currently open and which references some file other than the one connected to u has effects exactly as if it were immediately preceded by the statement

CLOSE (u)

A connected file cannot be connected to some other unit without first closing the existing connection.

11.6 Alternatives to OPEN and CLOSE Statements

At program termination, all files still open within that program are CLOSEd with default specifier values.

If a unit number u other than *, 100, 101, 102 appears in a **READ** or a **WRITE** statement which executes while that unit is not open, then the effect is exactly as if the statement

OPEN (u),

were executed immediately before the READ or WRITE statement.

The UNIX concepts of piping and redirection can be used to permit Fortran programs to access files of various names, of which files the programs have no knowledge at all. For example, if pgm1, pgm2, pgm3, and pgm4 are names of executable files, each of which contains the executable code for a (different) Fortran program which reads from standard input and writes to standard output, then

or

cat input file |pgm1 > output file

has the effect that pgm1 reads from file inputfile and writes to file outputfile, while

(pgm2 < input file) | pgm3 | pgm4 > output file

has the effect that pgm2 reads from file *inputfile* and sends its output to pgm3, which reads it and sends its own output to pgm4, which reads it and writes its own output to file *outputfile*. As convenient as this sort of thing may be, it does restrict the number of accessible files to two (or three, if standard error is considered).

The UNIX ln (link) command permits any number (up to the maximum; see the preceding section, "Connections") of files to be accessed by a Fortran program, of which files' names the program has no knowledge at all. For example,

In myfile fort.u

permits a Fortran program to access the file myfile while opening only the file fort.u, with or without an OPEN statement.

We recommend strongly that, with the exception of referring to standard input and standard output as unit * and using the techniques of piping and redirection, none of these techniques be used. Units ought to be explicitly **OPEN**ed and **CLOSE**d with appropriate specifiers and meaningful filenames, such filenames being read as character data by the program, interactively or from a file.

11.7 Data Transfer

11.7.1 READ, WRITE, and PRINT Statements

The ARLSCF Crays provide the ANSI standard data transfer statements READ, WRITE, and PRINT, which can communicate with sequential and direct access, formatted and unformatted files. Their syntax is

READ (clist) iolist WRITE (clist) iolist PRINT f, iolist

where *iolist* is the list of entities whose values are to be transferred, *clist* is a list of control specifiers, and f is as described under the FMT specifier, following.

In **READ** statements, the entities in the I/O list must be names of storage locations which are to receive data, and implied **DO** loops specifying such locations. In **WRITE** and **PRINT** statements, the entities in the I/O list are expressions and implied **DO** loops specifying such expressions, except that any functions specified therein must not themselves invoke data transfer statements, not even to transmit error messages.

Description of *clist* follows. "[]" indicate optional items. Order of the various items is immaterial, except as indicated. Values are provided as expressions (constants, symbolic constants, variables, array elements, function references, and combinations thereof) of the appropriate type.

- [UNIT=]u u is the desired unit designator; $0-102^{\dagger}$, *; if UNIT= is omitted, u must be the first item in the list.
- [,[FMT=]f] f is a statement label referencing a FORMAT statement, a character expression whose value is a format specification, or an * denoting list-directed I/O; if UNIT= appears, then f cannot be specified without FMT=; if neither UNIT= nor FMT= appear, then f, if it appears, must be the second item in the list; the format must not specify record lengths greater than the current maximum; presence of f identifies the statement as one performing formatted I/O; absence identifies the statement as one performing unformatted I/O.
- [,END=sn] sn is a statement label to which control is transferred if an EOF is detected during a READ; if not used, a fatal error occurs at EOF; used only with sequential READs.
- [,REC=rn] rn is an integer > 0 indicating the record where a direct access I/O operation is to begin; prohibited with sequential I/O.
- [,ERR=s] s is a statement label to which control is transferred if a recoverable error occurs during the I/O operation; default is the system's own error handling.
- [,IOSTAT=ios] ios is the name of a type integer storage location into which will be placed the error status of the I/O operation upon its termination.

11.7.2 'FORMATTED' and 'UNFORMATTED' I/O

Formatted I/O reads and writes data in the form of ASCII^{\dagger} characters. The data files are suitable for printing and viewing on terminals with a minimum of processing, and, generally speaking, are portable across computing systems. The *format* provides the rules according to which the values of the entities in

[†] Not ANSI standard.

the iolist are converted between the ASCII[†] external representation and the binary internal representation. The types of those entities must agree with the types implicit in the various format edit descriptors. Typically, a formatted record may be read correctly using several different formats.

Unformatted I/O reads and writes data in its internal binary representation, without conversion. Typically, the data files are unsuitable for any purpose other than being read on a computing system more or less similar to the one on which they were produced, by a **READ** statement similar to the **WRITE** statement which produced them. In particular,

- The iolist of the **READ** statement must not attempt to read more items than were in the iolist of the **WRITE** statement which wrote to the file.
- The types of the items in the iolist of the **READ** statement must match, item by item, those of the items in the iolist of the **WRITE** statement which wrote to the file.

Because there is no conversion of data, unformatted READs and WRITEs are considerably faster than formatted READs and WRITEs.

11.7.3 List-Directed I/O

List-directed I/O, denoted by an * in the format position of the control list, is a special case of sequential, formatted I/O.

The effect of list-directed input is as if the Fortran program scanned the input record and combined the manner in which the record is laid out with the program's own knowledge of the type of each entity in the *iolist* to create a format specification, that specification then being used to **READ** the record. Blank, comma, slash, asterisk, and end-of-record serve as data item separators and convey certain additional information to the **READ** statement.

A list-directed output statement simply outputs the values of the entities in the *iolist* according to their type, separating them with blanks and commas in a system-dependent manner.

11.7.4 'SEQUENTIAL' and 'DIRECT' I/O

A good conceptual model for 'SEQUENTIAL' files is a file stored on magnetic tape. On such a file, the various records are written in sequence and can be accessed only in that sequence; to access the $n^{\underline{th}}$ record, the $(n-1)^{\underline{th}}$ record must first be accommodated.

The characteristic of a 'SEQUENTIAL' file, that intervening records must be traversed, can result in significant inefficiencies when only certain noncontiguous records are to be read, or when records are to be read out of the sequence in which they were written. Another characteristic of Fortran 'SEQUEN-TIAL' files, which gives evidence of their tape ancestry, is that, once any embedded record is modified (i.e., rewritten), the portion of the file beyond that record is unusable. Therefore, to modify a certain embedded record, that record and the portion of the file from that record to the end of the file must be rewritten. (Appending records presents no such inconvenience.)

'DIRECT' files eliminate the cited problems by permitting records to be accessed in any sequence. Each record is assigned an ordinal, which serves as an index permitting such access. The penalty for such convenience is that all records in such a file must be of the same length. (There are nonstandard techniques for writing variable length record files with nonsequential characteristics.)

More correctly stated, it is not the file itself which is 'SEQUENTIAL' or 'DIRECT', but rather, the technique used to access it. Any file whose records are all of the same length (and which resides on a device compatible with nonsequential access) may be opened for either 'SEQUENTIAL' or 'DIRECT' access. When OPENed for 'SEQUENTIAL' access, such a file's records are accessed in their positional sequence: the first, then the second, When OPENed for 'DIRECT' access, such a file's record numbers are the records' ordinals.

Figure 11.1 presents a code fragment which displays the OPENing of four files, one corresponding to each of the four combinations of 'FORMATTED', 'UNFORMATTED', 'SEQUENTIAL', and 'DIRECT'; the WRITEing of computational results thereon for 1000 cases; the READing of selected cases therefrom; and, finally, their CLOSEing.

```
. . .
      INTEGER SELECT(3)
      DIMENSION ARRAY(5)
      CHARACTER STRING*16
      DATA N, SELECT /3,1,537,1000/
      OPEN (1, FILE='sequ', ACCESS='SEQUENTIAL',
               FORM= 'UNFORMATTED')
     +
      OPEN (2, FILE= 'diru', ACCESS= 'DIRECT', RECL=64,
               FORM= 'UNFORMATTED ')
     +
      OPEN (3, FILE='seqf', ACCESS='SEQUENTIAL',
               FORM= 'FORMATTED')
      OPEN (4, FILE='dirf', ACCESS='DIRECT', RECL=118,
               FORM= 'FORMATTED')
      DO 100 I=1,1000
                                 VAR, STRING, ARRAY
         WRITE (1)
         WRITE (2,
                         REC=I) VAR, STRING, ARRAY
         WRITE (3,1000)
                                 VAR, STRING, ARRAY
         WRITE (4,1000, REC=I) VAR, STRING, ARRAY
  100 CONTINUE
      DO 200 I=1, N
         REWIND 1
         REWIND 3
\mathbf{C}
         NOTE THAT AN IMPLIED DO ON UNIT 1 WOULD
С
         MAKE THE INPUT RECORD TOO LONG
         DO 150 J=1, SELECT(I)
             READ (1) VAR, STRING, ARRAY
  150
         CONTINUE
         READ (2,
                        REC=SELECT(I)) VAR, STRING, ARRAY
         READ (3, 1000) (VAR, STRING, ARRAY, J=1, SELECT(I))
         READ (4,1000, REC=SELECT(I)) VAR, STRING, ARRAY
  200 CONTINUE
      CLOSE (1)
      CLOSE (2)
      CLOSE (3)
      CLOSE (4)
 1000 FORMAT (E17.6, A, 5E17.6)
      END
     Figure 11.1. I/O with the Four Combinations of FORM and ACCESS Values
```

11.7.5 Carriage Control

Oftentimes, Fortran programs output certain printable characters in column 1 to effect carriage control on line printers configured specifically to process Fortran output. On such printers, column 1 is interpreted as containing a carriage control character and its printing is suppressed. The printers available at the ARLSCF do not support this feature; rather, they follow UNIX conventions to achieve carriage control. The UNICOS utility, **asa**, is available to convert Fortran printable files with column 1 carriage control characters into UNICOS printable files. **asa**'s output is to stdout, with error messages to stderr. Its input is from stdin (thus allowing its use in a pipe) or from files named as arguments. For additional information, see the **asa** manual page (i.e., execute **man asa**).

11.7.6 Newline Suppression

ANSI Standard Fortran 77 causes every sequential, formatted WRITE statement to go to the next line as its last act, and provides no means by which this may be suppressed, even though such suppression might be useful, e.g., in the output of prompts during interactive input. As an extension to the standard, Cray Fortran provides the edit descriptor, \$, which, if in the logically last position of the output format, suppresses movement to a new line upon completion of the WRITE.

11.7.7 NAMELIST I/O^{\dagger}

A Cray extension to the ANSI standard provides for NAMELIST input and output, which are documented in the CF77 Reference Manual. It is denoted by the NAMELIST group name in the format specifier position in the control list. This technique permits data to be input in any sequence and according to any format which are desired at the time of input. It is, however, tedious because it can require about twice as much data entry effort as the other formatted input techniques. More importantly, its use is likely to render a program nonportable. Figure 11.2 presents an example of the use of NAMELIST.

11.7.8 BUFFER IN and BUFFER OUT Statements[†]

A Cray extension to the ANSI standard provides for BUFFER IN and BUFFER OUT input and output, which are documented in the CF77 Reference Manual. This technique provides for *asynchronous* unformatted I/O; that is, once the I/O operation has been initiated, the program does not wait for its completion, but immediately continues on. Considerable performance improvement may be achieved when I/O operations constitute a significant portion of a program's activity and there is sufficient other work to be accomplished while I/O continues, more or less independently of program execution. Use of BUFFER IN and BUFFER OUT is likely to render a program nonportable.

One BUFFER IN/BUFFER OUT operation transfers data to/from a single array or a single common block, in multiples of 512 words. On the Cray-2, the files being accessed must be of the *pure data* structure (see the following section, "File Structures"). The UNIT and LENGTH functions are available to delay the execution sequence as desired until specific BUFFER IN and BUFFER OUT operations are completed, and to return status and number of words transferred information. Subsequent BUFFER IN and BUFFER OUT operations on a given file or unit are not initiated until preceding operations on those units are completed.

11 - 10

[†] Not ANSI standard.

program:

```
PROGRAM DEMO
      NAMELIST / IN/ FL,W,H,DEN
      NAMELIST /OUT/ WGT, FL, W, H
      DATA FL, W, H, DEN /4*1./
   10 READ (*, IN, END=20)
      WGT=DEN*FL*W*H
      WRITE (*, OUT)
      GOTO 10
   20 STOP
      END
input:
columns 1,2
11
 $IN
       $
               use program internal values
 IN FL = 3., W = 3.
 IN DEN = .5
output:
columns 1,2
11
 &OUTPUT WGT=1., FL=1., W=1., H=1., DEN=1., &END
 &OUTPUT WGT=9., FL=3., W=3., H=1., DEN=1., &END
 &OUTPUT WGT=4.5, FL=3., W=3., H=1., DEN=0.5, &END
                     Figure 11.2. NAMELIST I/O
```

Figure 11.3 presents an example of the use of BUFFER IN and BUFFER OUT. The first BUFFER IN initiates a transfer of 1024 words from file *in* to array A. Execution continues without waiting for completion until the second BUFFER IN is reached, at which time there is a delay until the first one completes (because both reference the same unit). This BUFFER IN transfers 512 words from file *in* to the specified portion of array C. Immediately upon initiation of the second BUFFER IN, the BUFFER OUT is initiated, and execution continues past the BUFFER OUT while input and output are effected.

```
DIMENSION A(1024), C(10000)

OPEN (32, FILE='in', FORM='UNFORMATTED')

OPEN (22, FILE='out', FORM='UNFORMATTED')

BUFFER IN (32,0) (A(1), A(1024))

BUFFER IN (32,0) (C(319), C(830))

BUFFER OUT (22,0) (A(1), A(1024))

....

Figure 11.3. BUFFER IN and BUFFER OUT I/O
```

11.7.9 READMS and WRITEMS Statements^{\dagger}

READMS and **WRITEMS** perform I/O similarly to **READ** and **WRITE** with the 'DIRECT' specifier, except that records no longer need be all of the same length. To use these and other MS subroutines, a program defines an array in storage in which is maintained an index of file positions versus record indices. Actual maintenance of the array is performed by the MS software package. The record keys can be numeric or alphanumeric, and data transfer can be synchronous or asynchronous. Detailed information is available in the Cray publication, UNICOS I/O Technical Note, SN-3075 6.0.

11.8 Improving I/O Performance

The following techniques can be used to achieve greater I/O efficiency:

- Using an implied DO within an I/O statement is faster than placing the I/O statement within a DO loop.
- Specifying an entire array by name is faster than specifying it element by element using an implied DO (by a factor of about 4 when transferring a 1000 element array).
- Unformatted I/O is considerably faster than formatted I/O (by a factor of about 250 on the Cray X-MP). The cost is that the output file is almost certain to be unusable on a dissimilar computing system.
- BUFFER IN[†] and BUFFER OUT[†] increase performance (at the cost of rendering a program nonstandard) by allowing other processing to occur during transfers. Even greater transfer rates can be obtained by using *pure data* files (see "File Structures," following) with these statements.

[†] Not ANSI standard.

11.9 Positioning the File

The ANSI standard leaves undefined the position of a sequential file in many situations. The following describes the situation for sequential files on the ARLSCF Crays when the **POSITION=**[†] specifier is not used in the **OPEN** statement. The **OPEN** ing of the file may have been accomplished by any means.

- When a sequential file is first opened or created, it is positioned at its beginning.[†]
- A REWIND positions a sequential file at its beginning.
- A READ, WRITE, or PRINT statement positions a sequential file just after the record just transmitted, ready to access the next record.
- A READ statement which detects an EOF condition does one of two things:
 - If the END= specifier was used, control is transferred to the statement indicated, and the file is positioned after the last data record, that is, correctly positioned to append additional data.
 - If the END= specifier was not used, a fatal error occurs and the program terminates.

11.10 File Structures^{\dagger}

Apart from the characteristics 'SEQUENTIAL', 'DIRECT', 'FORMATTED', and 'UNFOR-MATTED', ANSI Standard Fortran leaves undefined the scheme according to which data are stored in files. CF77 as implemented on the ARLSCF Crays uses the following UNICOS file structures:

- text This file structure is used for all formatted I/O, both sequential and direct. It consists of a sequence of 8-bit ASCII characters. Each record is terminated with the ASCII newline character (octal 012), which is not included in the record's character count. No record can be longer than the current maximum record length (see the preceding section, "Records"). A UNICOS sequential text file corresponds to the normal UNIX ASCII file.
- blocked This file structure is used by default for sequential, unformatted I/O. Each block contains 512 words, and each record begins on a word boundary. Blocks and records are delimited by control words. When such a file is created by a Fortran program, it is not easily readable except by a Fortran program using a **READ** statement similar to the **WRITE** statement which wrote to the file, and executing on a system similar to the one on which the file was created.
- pure data This file structure is used by default for direct, unformatted I/O. It can be used for other I/O operations. This type of file maximizes transfer rates. There are neither record nor block boundaries. When such a file is created by a Fortran program, it is not easily readable except by a Fortran program using a **READ** statement similar to the **WRITE** statement which wrote to the file, and executing on a system similar to the one on which the file was created.

[†] Not ANSI standard.

11.11 Internal Files

An internal file is not a file at all, but rather is a type character array, array element, or variable, or some substring thereof. Such entities are called internal files when used with **READ** and **WRITE** statements to perform type conversion, in a manner analogous to the use of (external) files with **READ** and **WRITE** statements to perform type conversion and data transfer between the interior and exterior of a Fortran program.

READ and **WRITE** statements targeting internal files can perform only sequential, formatted I/O which is not list-directed. Such **READ** and **WRITE** statements are so identified by replacing the unit identifier, [UNIT=]u, with the internal file identifier, [UNIT=] internal-file-name. The internal file name is simply the corresponding array, array element, variable, or substring name.

A READ statement targeting an internal file obtains character data from the storage locations which constitute the internal file, performs type conversion as specified by the format, and places the results in locations of the proper type specified by the iolist. A WRITE statement targeting an internal file obtains values from locations specified by the iolist, performs type conversion as specified by the format, and places the results in the storage locations which constitute the internal file. For example, to convert the integer value in variable IVAL to a type character value, a Fortran program might contain

> CHARACTER STRING*10 WRITE (STRING, '(I10)') IVAL

The result of this operation is that STRING contains a right-adjusted string, 10 characters long, left-filled with blanks, representing as printable characters the integer whose value is in IVAL. Formerly (prior to the 1977 Fortran standard), such conversions, involving Hollerith or character types, were performed using a variety of nonstandard techniques, or by brute force programming dependent upon the specific binary representation of the alphanumeric data.

If the internal file is a character variable or array element, or substring thereof, it consists of a single record whose length is the length of the character variable, array element, or substring. If the internal file is a character array, it consists of a sequence of records, one per array element, each record's length being the length of an array element. **READ**ing or **WRITE**ing beyond the end of an internal file has the same effect as **READ**ing or **WRITE**ing beyond EOF in an external file, unless the internal file is an assumed size array, in which case no detection is performed. An internal file is always positioned at the beginning of its first record, except during a **READ** or a **WRITE**. An internal file becomes defined by **WRITE**ing thereto, by execution of a **READ** statement which specifies the corresponding character storage locations in its iolist, or by assignment of character data to the corresponding character storage locations. Internal files may not appear as targets of I/O statements other than **READ** and **WRITE**.

12. Fortran Code Conversion

Oftentimes, programs developed and used on a particular machine under a particular operating system with a particular compiler will not produce the same results, or even run to completion, when even one of those three environments is changed. This chapter provides assistance to the programmer/user of a Fortran program who is faced with such a problem. In addition, the information provided should be considered in the development of new programs or parts of programs. Specifically, the Fortran dialect addressed is Cray Fortran release 5.0. Detailed information may be found in the Cray publications, CF77 Compiling System,

Volume 1: Fortran Reference Manual, SR-3071 5.0 Volume 2: Compiler Message Manual, SR-3072 5.0 Volume 3: Vectorization Guide, SG-3073 5.0 Volume 4: Parallel Processing Guide, SG-3074 5.0

12.1 ANSI Standard Fortran Programs

Fortran programs which do not violate the 1977 ANSI Fortran Standard (henceforth referred to as "the standard") should be compatible with either of the ARLSCF Cray computers after compilation under **cft77** or, preferably, **cf77**.[†] Of itself, however, this does not guarantee duplication of results obtained on other machines, nor even execution to the point considered by the programmer/user to be "completion." Nevertheless, we recommend most strongly that all Fortran programs be in conformity with the standard in order to reduce the difficulties encountered when a program is moved to a different machine, operating system, or compiler, and to facilitate the continuing task of program maintenance. If, in addition, the program is structured and modular, then those difficulties will be minimized. The only exceptions to this general principle should be those made to accomplish otherwise impossible tasks, or to achieve significantly greater efficiency.

In any event, any nonstandard portions of the code, and any portions for which the standard admits of more than one interpretation, should be clearly identified with comment lines, and an explanation provided of the programmer's intent.

Some of the more common causes of a standard-conforming Fortran program's failure to reproduce earlier results include:

- The standard does not specify the positioning of a file when it is **OPEN**ed. Thus, a standardconforming program which does not explicitly position a file after **OPEN**ing it may find the file at its beginning (ready to read the first record) on certain machines and at its end (ready to append an additional record) on others. By default, cf77 positions files at their beginning when they are **OPEN**ed.
- The standard makes use of the **PROGRAM** statement optional, and permits it to have arguments, which the standard ignores. Such arguments are often used in other environments to provide file connection information. cf77 ignores all arguments on a **PROGRAM** statement.

[†] cft77 is the compiler proper. cf77 invokes the compiling system, which performs considerable optimization in addition to that of cft77. The compiling system consists of preprocessors gpp, fpp, and fmp, the compiler itself, cft77, and the loader/linker segldr. Henceforth, only the term cf77 will be used to identify the compiler, in accord with the preferred command syntax.

• The standard specifies only that type DOUBLE PRECISION provide an approximation to the value of a real number which is of greater precision than that provided by type REAL. It does not specify how precise the approximation is to be. Because REAL entities use 64-bit words (and DOUBLE PRECISION entities, two such words) on the Crays, results are expected to be more precise than on most other machines. In fact, Cray single precision results are likely to be as precise as other machines' double precision results. If a program uses IF statements to compare noninteger numeric values without an error band, the more precise Cray approximations may cause the program to follow a different logical path.

12.2 Nonstandard Fortran Programs

The problems just described, which may require significant effort to identify and correct, begin to appear trivial when one considers the seemingly endless difficulties caused by the combination of nonstandard usage with unmodular and unstructured (especially "spaghetti") code. Even when some nonstandard feature used in a program being ported seems to be available under cf77, there is no *a priori* assurance that the feature has the same syntax and functionality. The following paragraphs indicate the more common areas in which difficulty may arise when a program, which does not conform to the standard or which incorporates poor programming practice, is ported to the ARLSCF Crays.

12.3 Likely Trouble Areas

12.3.1 Programs from a COS Environment

In addition to the material presented herein, Appendix H of the Cray publication, CF77 Compiling System, Volume 1: Fortran Reference Manual, SR-3071 5.0, lists differences between cft and cft77.

12.3.2 Programs from an IBM Environment

In addition to the material presented herein, pay particular attention to nonstandard names of commonly available, or otherwise standard, intrinsic functions (e.g., ARSIN vs. ASIN, ARCOS vs. ACOS, etc.).

12.3.3 Programs from a VAX Environment

In addition to the material presented herein, pay particular attention to:

- ACCEPT and TYPE statements vs. READ and PRINT
- VIRTUAL statements vs. DIMENSION
- VAX specific system calls
- Nonstandard specifiers in OPEN, CLOSE, and INQUIRE statements
- CHARACTER and other type entities in the same COMMON block
- Use of * in EXTERNAL statements
- Edit descriptors without length specification, except for A
- Nonstandard use of the **PARAMETER** statement
- D in column 1 to indicate debug statements

Introductory User Guide – May 1993

12.3.4 Character Set

The standard character set is

A through Z 0 through 9 (blank) = + - * / (), . \$ ':

In addition, Cray Fortran recognizes

a through z "!_ (tab) @ (@ is used in names created by cf77)

Except in type **CHARACTER** or Hollerith values, the compiler does not distinguish between upper and lower case letters. Thus, for example, the keywords write and WRITE are the same, as are the variable names result and **RESULT**.

12.3.5 Lines

cf77, in accord with the standard, accepts Fortran code in columns 1 through 72. The -N80 option extends this to columns 1 through 80. Lines may be as long as 96 characters; the portion beyond column 72 or column 80 is ignored by the compiler.

The standard accepts as many as 19 continuation lines, permitting a single statement to span as many as 20 lines. cf77 accepts as many as 99 continuation lines, permitting a single statement to span as many as 100 lines.

Neither the standard nor cf77 permit more than one statement or parts of more than one statement on one logical line (first line of statement and all of its continuation lines).

12.3.6 Tabs

As an extension to the standard, cf77 recognizes the tab character within source code, with the following interpretation:

- If a tab character is in column 1, the next character determines the line's interpretation: a nonzero digit indicates a continuation line; otherwise, the line is a statement's initial line.
- A tab character must not occur to the left of a statement label.
- A tab character within the statement is compiled as a blank.
- Tabs are expanded to varying amounts of white space in the compiler listing output, to produce reasonable indentations and other spacing.
- Regardless of how it might be expanded, a tab is counted as contributing one column to the length of a line of source code.

12.3.7 Comments

The standard specifies that any entirely blank line, and any line with a C or * in column 1, is a comment. cf77 extends this to include any line with a c or ! in column 1. Furthermore, embedded comments are recognized: whenever an ! appears outside of a character constant and not in column 6, the portion of the line to its right is comment. (In column 6, an ! is a continuation character.)

12.3.8 D in Column 1

Certain compilers treat a D in column 1 as a debugging flag. The cft77 compiler of the cf77 compiling system will consider this a fatal error. However, the fpp preprocessor of the cf77 compiling system provides a "switch" (k, enabled by default) for use with its enable/disable (-e/-d) options which causes such statements to be treated as comments. This functionality is available when fpp is used in its full precompiler mode and also when all but its TIDY functionality is suppressed.

12.3.9 Names

The standard permits names of programs, subprograms, common blocks, arrays, and variables to be up to six characters long. cf77 permits those names to be as long as 31 characters.

12.3.10 Local Variables: Retention of Value

Some programs, particularly older ones, depend upon the notion that, once a **RETURN** from a subprogram is effected, variables and arrays local to that subprogram retain their values until that subprogram is again invoked, at which time those values are once again available. That notion is not in accord with the standard, nor is it supported by cf77.

Some programs, particularly older ones, depend upon the notion that placing the entities just described in **COMMON** within the subprogram is sufficient to cause retention of their values as just described. That notion is not in accord with the standard, nor is it supported by cf77.

In accord with the standard, cf77 causes all entities (whose values are capable of changing) within a subprogram to become undefined upon execution of a **RETURN** from that subprogram except:

- entities specified therein by SAVE statements
- entities specified therein in blank COMMON
- entities specified therein in a DATA statement, which entities have neither been redefined nor become undefined in any invocation of that subprogram
- entities specified therein in a named COMMON block and in the same named COMMON block in at least one other program unit that references, directly or indirectly, that subprogram (i.e., other program unit that is in the invocation sequence for the current invocation of that subprogram)

12.3.11 Recursion

As an extension to the standard, cf77 permits a subprogram to reference itself if its FUNCTION or SUBROUTINE statement begins with the keyword RECURSIVE and it is compiled in stack mode, or if it is compiled with the cf77 option -Wf''-o recursive".

In accord with the standard, no function whose name appears in the I/O list of an I/O statement may itself invoke I/O statements, not even to issue an error message.

12.3.12 I/O

12.3.12.1 External Files

Connections

Connection and assignment of files and file names by means of arguments on the **PROGRAM** statement (common practice in a CDC environment) is ignored. Files should be connected/disconnected (and created as required) by use of the **OPEN** and **CLOSE** statements.

Standard or System Input and Output

Standard or system input and output should be referenced as unit "*" rather than by some systemdependent number. Unit "*" must be neither OPENed nor CLOSEd. cf77 preconnects standard error, standard input, and standard output to units 0, 5, 6, respectively, and to units 100, 101, 102, respectively. Connections to units 0, 5, 6 may be changed, but not those to units 100, 101, 102.

Preconnected Files

cf77 preconnects standard error, standard input, and standard output to units 0, 5, 6, respectively, and to units 100, 101, 102, respectively. Units n are preconnected to files fort.n, where n has values 1, 2, 3, 4, 7, ..., 99.

Positioning

The standard does not specify file position at OPEN. Whenever a file is OPENed with other than **STATUS=NEW**, it should be positioned explicitly at the desired position. **REWIND** positions a file just before its first record, ready to **READ** that record. **READ**ing a file to its end (use the **END=** specifier in the **READ** statement) and **BACKSPACE**ing one record positions it just after its last record, ready to append an additional record.

Number of Open Files

The maximum number of files which can be open simultaneously per process is 60 on the Cray X-MP and 100 on the Cray-2 (nonstandard). Standard input, standard output, and standard error are always open and do not contribute to the count of open files.

Multifile Files

These are not supported in the normal course of events, but may be used on the Cray X-MP for UNFORMATTED files if certain system-level action is taken (do man blocked).

12.3.12.2 Recursion

In accord with the standard, no function whose name appears in the I/O list of an I/O statement may itself invoke I/O statements, not even to issue an error message.

12.3.12.3 List-Directed Output

The standard provides and cf77 supports list-directed output. However, the specific appearance of the output (number of items per line, amount and positioning of white space) is not defined by the standard, and is unlikely to be the same under cf77 as it was in the original environment of the program.

12.3.12.4 NAMELIST I/O

As an extension to the standard, cf77 provides NAMELIST I/O. Its syntax and operation may not be the same as in the original environment of a program using it.

12.3.12.5 Newline Suppression

ANSI Standard Fortran 77 causes every sequential, formatted WRITE statement to go to the next line as its last act and provides no means by which this may be suppressed, even though such suppression might be useful, e.g., in the output of prompts during interactive input. As an extension to the standard, Cray Fortran provides the edit descriptor, \$, which, if in the logically last position of the output format, suppresses movement to a new line upon completion of the WRITE.

12.3.13 INCLUDE Files

Although nonstandard, the INCLUDE statement is recognized by cf77. It may not be continued onto a second line. The cf77 option -I affects its interpretation.

12.3.14 The PROGRAM Statement

Use of the **PROGRAM** statement is optional under the standard and under **cf77**. Its use is recommended for portability and because certain Cray utilities (e.g., FLOWTRACE) require it. **cf77** ignores all arguments on this statement.

12.3.15 Types

cf77 recognizes types:

REAL	standard
REAL*n	nonstandard
	n=4, 8; same as REAL
	n=16; same as DOUBLE PRECISION
DOUBLE PRECISION	standard
DOUBLE	nonstandard; same as DOUBLE PRECISION
INTEGER	standard
INTEGER*n	nonstandard
	n=2, 4, 8; same as INTEGER
CHARACTER	standard
LOGICAL	standard
COMPLEX	standard
DOUBLE COMPLEX	nonstandard; see the second following section
POINTER	nonstandard
Boolean	nonstandard; no type statement

In addition to the standard statement IMPLICIT type, the nonstandard IMPLICIT NONE is recognized, requiring explicit typing of all variables and arrays.

12.3.15.1 INTEGER

By default, cf77 uses a 46-bit representation for integers, for a range

 $-2^{45} \le I \le 2^{45}$, or approximately $-10^{14} \le I \le 10^{14}$

64-bit integers can be specified with cf77 - Wf" - i64..." ..., for a range $-2^{63} < I < 2^{63}$, or approximately $-10^{19} < I < 10^{19}$

12.3.15.2 REAL, DOUBLE PRECISION, COMPLEX, DOUBLE COMPLEX

REAL and **DOUBLE PRECISION** values, and each component of a **COMPLEX** value, have magnitudes in the range

 $2^{-8189} < R < 2^{8190}$, or approximately $.367*10^{-2465} < R < .273*10^{2466}$

The -Wf"-dp" compilation option causes nonstandard type DOUBLE COMPLEX to be recognized, and types DOUBLE COMPLEX and DOUBLE PRECISION to be compiled exactly as if they were COMPLEX and REAL. This is a particularly useful option because it permits the use of single precision on the Crays, which is generally at least as precise as double precision on other machines, while avoiding the labor of actually changing the code, with its possibly disastrous results were the code to be returned to some other machine. Single precision on the Crays yields about 14 significant digits, and double precision, about 28.

NOTE CAREFULLY that, if the type DOUBLE COMPLEX is used, and the -Wf"-dp" compilation option is not used, there will be no error message, nor even a warning or ANSI noncompliance message, except about variable names longer than the standard six characters. The result of the compilation will be to treat all entities, except the first one, in the DOUBLE COMPLEX statement as DOUBLE PRECI-SION, and to create a new DOUBLE PRECISION variable named COMPLEX original-first-name.

12.3.15.3 CHARACTER

Collating Sequence

The standard requires only that A through Z be in the normal sequence, that 0 through 9 be in the normal sequence, that the letters and digits not be intermixed, and that (blank) occur before both A and 0. cf77 uses the ASCII collating sequence.

String Delimiters

The standard CHARACTER string delimiter is "'". cf77 accepts "'" and """ as string delimiters. Of course, the opening delimiter must be the same as the closing one.

Character Relational Expressions

Relational expressions involving two character expressions are permitted by the standard and by cf77. However, because the collating sequence is not completely specified by the standard, we recommend the standard intrinsic functions LGE, LGT, LLE, and LLT be used. These functions always make comparisons according to the ASCII collating sequence, regardless of which sequence is native to a particular environment. Of course, the equality (.EQ. and .NE.) comparisons present no such problem.

Hollerith

Hollerith data is nonstandard. It is usable (but obsolete) as a form of Boolean. For portability and greatly increased ease of use (insensitivity to the length of machine words and no necessity to count characters), Hollerith information should be replaced with type **CHARACTER** information.

12.3.15.4 Boolean Values

Boolean values are nonstandard. A Boolean constant displays the internal representation of a 64-bit Cray word. There are no Boolean variables or arrays, nor is there a Boolean type statement. No user-specified function can produce a Boolean result, but certain nonstandard intrinsic functions can.

When one operand of a binary arithmetic or relational operator is Boolean, the operation is performed as if the Boolean operand were of the type of the other operand. When both operands are Boolean, the operation is performed as if both operands were of type INTEGER.

A Boolean constant can be written as:

octal	1 through 22 octal digits suffixed B (e.g., 177B), or 1 through 22 octal digits delimited
	with apostrophes or quotation marks prefixed with the letter O (e.g., O'177'). Stored
	right-adjusted in memory with leading zeroes. If all 22 digits are used, the leftmost one
	can be only 0 or 1.

- hexadecimal 1 through 16 hexadecimal digits delimited with apostrophes or quotation marks prefixed X (e.g., X'1FF'). Stored right-adjusted in memory with leading zeroes. Digits may be signed (e.g., X'-1FF').
- Hollerith 1 through 8 characters prefixed nH, n being the character count (e.g., 6HABC 12). 1 through 8 characters delimited with apostrophes or quotation marks suffixed H (e.g., 'ABC 12'H). Stored left-adjusted in memory with trailing blanks. If L or R is used instead of H, nulls rather than blanks are used for padding, and storage is left- or rightadjusted, respectively.

12.3.16 Type Conversion

Numeric and Boolean (nonstandard) types may be converted among each other implicitly by using assignment statements, explicitly by using the intrinsic type conversion functions, and implicitly by using mixed type expressions. All three techniques conform to the standard, but the last one is bad practice and fraught with hazard.

Conversion from/to character (including Hollerith) information has been accomplished in any number of ways, from brute force code dependent upon the details of machine architecture and character encoding schemes, to the use of nonstandard facilities such as DECODE and ENCODE. cf77 supports DECODE and ENCODE, but these techniques are obsolete, cumbersome, and vary from one machine to another. The standard (and exceptionally convenient) method of converting from and to type CHARAC-TER is to use READ and WRITE statements in almost exactly the same manner as for I/O from and to external files. See the chapter, "CF77 I/O," for a brief description.

12.3.17 Logical Expressions

The standard does not specify the machine representations for .TRUE. and .FALSE.. cf77 stores .TRUE. as a word with high order bit set to one and all others zero. .FALSE. is stored as a word with all bits set to zero. Because these representations vary among compilers, the Boolean values for .TRUE. and .FALSE. should not be used, but rather .TRUE. and .FALSE. themselves.

12.3.18 Relational Expressions

Whenever relational expressions are used with noninteger numeric entities, error bands should be used to avoid obtaining incorrect results due to insignificant variations in the low order bits. This problem is particularly acute when codes are moved from one machine or compiler to another. Variations are due not only to differing word lengths, but also to differing algorithms used for **REAL** and **DOUBLE**

12 - 9

PRECISION arithmetic.

Character relational expressions (except for those testing equality) should be replaced with the standard intrinsic functions LGE, LGT, LLE, and LLT (which always use the ANSI collating sequence) so that variations in collating sequences from one machine or compiler to another will not affect the result.

12.3.19 IF Statements

The 2-branch arithmetic IF is nonstandard and obsolete, but still usable under cf77. Of form

the statement transfers control to statement label 1 if the arithmetic expression has a nonzero value, otherwise to statement label 2.

The indirect logical IF is nonstandard and obsolete, but still usable under cf77. Of form

the statement transfers control to statement label 1 if the logical expression has value .TRUE., otherwise to statement label 2.

The 3-branch arithmetic IF is standard. Of form

IF (exp) sl1,sl2,sl3

the statement transfers control to statement label 1 if the arithmetic expression has a negative value, to statement label 2 if the arithmetic expression has a zero value, or to statement label 3 if the arithmetic expression has a positive value.

All three of these statements are easily replaced with logical or block IF statements, both of which are standard, greatly improve program readability, and permit the compiling system to perform code optimizations.

12.3.20 DO Loops

Some environments cause DO loops (whose DO statement is executed) to always be executed at least once, even if the values of the DO loop controlling expressions otherwise would cause the loop to be bypassed and not executed at all. This is not the case under cf77, which adheres to the standard in this respect. The -Wf''-ej'' compiling option forces DO loops to be executed at least once, regardless of the values of the DO loop controlling expressions.

Although the standard permits DO loop controlling expressions to be REAL or even DOUBLE PRECISION, this is extremely bad practice because the iteration count becomes dependent upon insignificant variations in the low order bits. This problem is particularly acute when codes are moved from one machine or compiler to another.

As an extension to the standard, cf77 supports DO WHILE loops and END DO statements. The syntax and functionality may not be the same as in a program's original environment.

12.3.21 Array Operations

As an extension to the standard, cf77 permits the use of arrays as primaries in assignment statements. The operations are elemental; that is, if A, B, and C are conformable arrays, then

$$C = A * B$$

means

DO 20 I = 1, NROWS
DO 10 J = 1, NCOLS
$$C(I,J) = A(I,J) * B(I,J)$$

10 CONTINUE
20 CONTINUE

12.3.22 Masking, Shifting, and Bit Manipulation

As an extension to the standard, cf77 provides functions which perform logical product, sum, difference, equivalence, complement, shift (circular, left, right), merge, and population count operations. In addition, cf77 provides integer bit manipulation functions in accord with MIL-STD-1753. Pay particular attention to the effects of differing word lengths between machines.

12.4 Useful Utilities

12.4.1 Code Checking

The cf77 compiling system itself has excellent code checking capabilities. We recommend that, until a program is determined to be error free, at least the following options be used to provide a full suite of compilation and execution diagnostics.

```
cf77 -F -g -Wf"-ecimnsx -ooff -m0 -Rabc" files.f
```

12.4.2 TIDYing

Code "tidying" or "beautifying," although entirely cosmetic, can make a remarkable improvement in the legibility and, hence, maintainability, of intricate, lengthy, unstructured programs with statement labels not in numerical order and with FORMAT and DATA statements scattered throughout.

The cf77 compiling system includes the fpp preprocessor, which can produce vectorization of source code beyond that provided by cft77. Because of its extensive parsing and analysis capabilities, fpp is more than an adequate processor to beautify source code. The command

fpp -dacdehjlmpsuvy015 -ql -r... -ny... files.f

disables (-d) almost all (see the discussion at the end of this section) functionality of **fpp** except TIDYing, with output to standard out. The $-\mathbf{r}$ and $-\mathbf{n}$ options use their own set of switches to enable and disable, respectively, various features of code beautification. There are 21 such switches which provide the user with the ability to select exactly what is to be done. Among the more popular features, with very abbreviated descriptions and their default settings, are:

- **a** places inline comments on preceding line if available inline space becomes insufficient (on)
- c ensures space after comma in list (on)
- **e**, **p e** ensures space around =, and **p**, around + and (on)
- f positions FORMAT statements just before the END (off)
- j, t j ensures space around ** and //, and t, around * and / (off)
- k, o, q
 k ensures space around .AND., .OR., .EQV., .NEQV. (off); o ensures space around all logical operators (off); q is a combination of k and o which treats IF statements differently (on); only one of the three may be on

12 - 11

- m modifies spacing rules to permit short, otherwise two-line, statements to fit on one line (on)
- **n** ensures space around nonsubscript parentheses (off)
- **r** generates a block of comments listing externals (off)
- **s** applies **j**, **p**, **t** spacing rules to inside of parentheses (off)
- x shorthand specification of a popular style: format relabeling initialized at 900, other statement relabeling initialized at 100, both with an increment of 10, and insertion of comments summarizing externals (off)
- y beautifies only optimized blocks and echoes remainder of program (on)

These and other features can be selected and modified by the use of directives within the source files, applying to portions or to the entireties of the files. The SWITCH directive is the only way to change FORMAT and other statement label initial values and increments, indentations for different classes of statements, placement of statement labels, placement of comments, and the continuation line character. For example, the directives

CFPP\$ SWITCH,FORMAT=900:10,RENUMB=100:10,LABELS=5:R,CONCHR=+ CFPP\$ SWITCH,INDDO=3,INDIF=3,INDCN=3,LSTCOL=31

renumber FORMAT and other statement labels to starting values of 900 and 100, respectively, with increments of 10; right-adjust statement labels into column 5; specify "+" to be the continuation line character; specify that DO blocks and IF blocks be indented three columns for each nesting level; specify that continuation lines be indented three columns; and specify that column 31 be the last column available for indentation, i.e., that no statement begin beyond column 31. Except for the continuation line character, these illustrative values are the TIDY defaults.

Detailed instructions for the use of the TIDY function of **fpp** can be found in the Cray publication, CF77 Compiling System, Volume 4: Parallel Processing Guide, SG-3074 5.0, pages 33 ff and 293 ff.

As stated previously, it is not quite possible to disable all but the TIDY functionality of **fpp**. One characteristic of **fpp** which cannot be disabled and which is highly visible to the user desiring ANSI Standard Fortran 77 output is the suffixion of certain Cray Fortran INTRINSIC subprogram names with an @ symbol. That this characteristic cannot be disabled is not addressed in the level 5.0 Cray documentation. This characteristic causes no difficulty at all, and, in fact, is a desired result, if the resulting code is then to be compiled by **cft77**, with or without intervening **fmp** processing. However, if the output is intended to be Fortran 77 source code with no greater degree of nonstandardness than the input, then the presence of the @ symbols is a corruption of the code.

There are several corrective strategies. One of the simplest is based on the realization that the @ symbols will almost certainly be sparse. In this case, it is practical to execute grep -n @ on even large source files to identify and examine those lines containing @ symbols. With or without the grep, appropriate editors can be used to find and remove the offending @ symbols.

For those cases where the source code is so lengthy or so riddled with @ symbols that manual correction is undesireable, the **fpp** output can be piped through the filter of Figure 12.1 to remove exactly those @ symbols inserted by **fpp**.

12.4.3 fsplit

fsplit [-s] [files] is a UNICOS utility which splits up one or more files containing Fortran program elements into a number of other files, each one containing one program element. Each main PROGRAM, BLOCKDATA, FUNCTION, and SUBROUTINE constitutes one element. This functionality can make less onerous the conversion of larger programs and the casting of such programs into a makefile structure. The -s option strips trailing blanks from lines.

<pre>gawk ' BEGIN { split("MOD@ ABS@ IABS@ INT@ REAL@" "MAX@ MAX0@ MIN@ MIN0@ AND@" "IAND@ OR@ IOR@ ISHFT@ SHIFTL@" "SHIFTR@ CVMGM@ CVMGN@ CVMGP@ CVMGT@" "CVMGZ@" "mod@ abs@ iabs@ int@ real@" "max@ max0@ min@ min0@ and@" "iand@ or@ ior@ ishft@ shiftl@" "shiftr@ cvmgm@ cvmgn@ cvmgp@ cvmgt@" "cvmgz@", n = split("MOD ABS IABS INT REAL" "MAX MAX0 MIN MIN0 AND" "IAND OR IOR ISHFT SHIFTL" "SHIFTR CVMGM CVMGN CVMGP CVMGT" "CVMGZ" "mod abs iabs int real" "max max0 min min0 and" "iand or ior ishft shiftl" "max max0 min min0 and" "iand or ior ishft shiftl" "shiftr cvmgm cvmgn cvmgp cvmgt" "cvmgz", "orig) } </pre>					****	-			
<pre>"MAX@ MAXO@ MIN@ MINO@ AND@" "IAND@ OR@ IOR@ ISHFT@ SHIFTL@" "SHIFTR@ CVMCM@ CVMGN@ CVMGP@ CVMGT@" "CVMGZ@" "max@ maxO@ min@ minO@ and@" "iand@ or@ ior@ ishft@ shiftl@" "shiftr@ cvmgm@ cvmgn@ cvmgp@ cvmgt@" "cvmgz@", mod) n = split("MOD ABS IABS INT REAL" "MAX MAXO MIN MINO AND" "IAND OR IOR ISHFT SHIFTL" "SHIFTR CVMCM CVMGN CVMGP CVMGT" "CVMGZ" "mod abs iabs int real" "max maxO min minO and" "iand or ior ishft shiftl" "shiftr cvmgm cvmgn cvmgp cvmgt" "orig) }</pre>	gawk ´								
"IAND@ OR@ IOR@ ISHFT@ SHIFTL@" "SHIFTR@ CVMGM@ CVMGN@ CVMGP@ CVMGT@" "CVMGZ@" "mod@ abs@ iabs@ int@ real@" "max@ max0@ min@ min0@ and@" "iand@ or@ ior@ ishft@ shiftl@" "shiftr@ cvmgm@ cvmgn@ cvmgp@ cvmgt@" "cvmgz@", mod) n = split("MOD ABS IABS INT REAL" "MAX MAX0 MIN MIN0 AND" "IAND OR IOR ISHFT SHIFTL" "SHIFTR CVMGM CVMGN CVMGP CVMGT" "CVMGZ" "mod abs iabs int real" "max max0 min min0 and" "iand or ior ishft shiftl" "shiftr cvmgm cvmgn cvmgp cvmgt" "cvmgz", "orig) }	BEGIN	{	split(—	-			\
"SHIFTR@ CVMGM@ CVMGN@ CVMGP@ CVMGT@" "CVMGZ@" "mod@ abs@ iabs@ int@ real@" "max@ max0@ min@ min0@ and@" "iand@ or@ ior@ ishft@ shiftl@" "shiftr@ cvmgm@ cvmgp@ cvmgt@" "cvmgz@", mod) n = split("MOD ABS IABS INT REAL" "MAX MAX0 MIN MIN0 AND" "IAND OR IOR ISHFT SHIFTL" "SHIFTR CVMGM CVMGN CVMGP CVMGT" "CVMGZ" "mod abs iabs int real" "max max0 min min0 and" "iand or ior ishft shiftl" "shiftr cvmgm cvmgn cvmgp cvmgt" "cvmgz", }									\
"CVMGZ@" "mod@ abs@ iabs@ int@ real@" "max@ max0@ min@ min0@ and@" "iand@ or@ ior@ ishft@ shiftl@" "shiftr@ cvmgm@ cvmgp@ cvmgt@" "cvmgz@", mod) n = split("MOD ABS IABS INT REAL" "MAX MAX0 MIN MIN0 AND" "IAND OR IOR ISHFT SHIFTL" "SHIFTR CVMCM CVMGN CVMGP CVMGT" "CVMGZ" "mod abs iabs int real" "max max0 min min0 and" "iand or ior ishft shiftl" "shiftr cvmgm cvmgn cvmgp cvmgt" "cvmgz", }									\
<pre>"mod@ abs@ iabs@ int@ real@" "max@ max0@ min@ min0@ and@" "iand@ or@ ior@ ishft@ shiftl@" "shiftr@ cvmgm@ cvmgm@ cvmgp@ cvmgt@" "cvmgz@", mod) n = split("MOD ABS IABS INT REAL" "MAX MAX0 MIN MIN0 AND" "IAND OR IOR ISHFT SHIFTL" "SHIFTR CVMGM CVMGN CVMGP CVMGT" "CVMGZ" "mod abs iabs int real" "max max0 min min0 and" "iand or ior ishft shiftl" "shiftr cvmgm cvmgn cvmgp cvmgt" "cvmgz", </pre>					CVMGM@	CVMGN@	CVMGP@	CVMGT@"	Λ
<pre>"max@ max0@ min@ min0@ and@" "iand@ or@ ior@ ishft@ shiftl@" "shiftr@ cvmgm@ cvmgp@ cvmgt@" "cvmgz@", mod) n = split("MOD ABS IABS INT REAL" "MAX MAX0 MIN MIN0 AND" "IAND OR IOR ISHFT SHIFTL" "SHIFTR CVMGM CVMGN CVMGP CVMGT" "CVMGZ" "mod abs iabs int real" "max max0 min min0 and" "iand or ior ishft shiftl" "shiftr cvmgm cvmgn cvmgp cvmgt" "cvmgz", orig)</pre>				-					N
<pre>"iand@ or@ ior@ ishft@ shiftl@" "shiftr@ cvmgm@ cvmgm@ cvmgp@ cvmgt@" "cvmgz@", n = split("MOD ABS IABS INT REAL" "MAX MAX0 MIN MIN0 AND" "IAND OR IOR ISHFT SHIFTL" "SHIFTR CVMGM CVMGN CVMGP CVMGT" "CVMGZ" "mod abs iabs int real" "max max0 min min0 and" "iand or ior ishft shiftl" "shiftr cvmgm cvmgn cvmgp cvmgt" "cvmgz", "orig) }</pre>				-	-	-	-		N
<pre>"shiftr@cvmgm@cvmgn@cvmgp@cvmgt@" ("cvmgz@", mod) n = split("MOD ABS IABS INT REAL" ("MAX MAX0 MIN MIN0 AND" ("IAND OR IOR ISHFT SHIFTL" ("SHIFTR CVMGM CVMGN CVMGP CVMGT" ("CVMGZ" ("mod abs iabs int real" () "max max0 min min0 and" () "iand or ior ishft shiftl" () "shiftr cvmgm cvmgn cvmgp cvmgt" () "cvmgz", orig) }</pre>				-	-	-	-		N
"cvmg z@", n = split("MOD ABS IABS INT REAL" "MAX MAX0 MIN MINO AND" "IAND OR IOR ISHFT SHIFTL" "SHIFTR CVMGM CVMGN CVMGP CVMGT" "CVMGZ" "mod abs iabs int real" "max max0 min min0 and" "iand or ior ishft shiftl" "shiftr cvmgm cvmgn cvmgp cvmgt" "cvmg z", }				-					N
<pre>n = split("MOD ABS IABS INT REAL" "MAX MAX0 MIN MIN0 AND" "IAND OR IOR ISHFT SHIFTL" "SHIFTR CVMGM CVMGN CVMGP CVMGT" "CVMGZ" "mod abs iabs int real" "max max0 min min0 and" "iand or ior ishft shiftl" "shiftr cvmgm cvmgn cvmgp cvmgt" "cvmgz", }</pre>					-	c vmg n@	c vmg p@	c vmg t@"	Λ
"MAX MAXO MIN MINO AND" "IAND OR IOR ISHFT SHIFTL" "SHIFTR CVMGM CVMGN CVMGP CVMGT" "CVMGZ" "mod abs iabs int real" "max max0 min min0 and" "iand or ior ishft shiftl" "shiftr cvmgm cvmgn cvmgp cvmgt" "cvmgz", orig)									mod)
"IAND OR IOR ISHFT SHIFTL" "SHIFTR CVMGM CVMGN CVMGP CVMGT" "CVMGZ" "mod abs iabs int real" "max max0 min min0 and" "iand or ior ishft shiftl" "shiftr cvmgm cvmgn cvmgp cvmgt" "cvmgz", orig)	n	=	split(Ň
"SHIFTR CVMGM CVMGN CVMGP CVMGT" "CVMGZ" "mod abs iabs int real" "max max0 min min0 and" "iand or ior ishft shiftl" "shiftr cvmgm cvmgn cvmgp cvmgt" "cvmgz", orig)									Ň
"CVMGZ" "mod abs iabs int real" \ "max max0 min min0 and" \ "iand or ior ishft shiftl" \ "shiftr cvmgm cvmgn cvmgp cvmgt" \ "cvmgz", orig) }									N. N
"mod abs iabs int real" \ "max max0 min min0 and" \ "iand or ior ishft shiftl" \ "shiftr cvmgm cvmgn cvmgp cvmgt" \ "cvmgz", orig) }					CVMGM	CVIVIGIN	CVMGP	CVMG1	Ň
"max max0 min min0 and" \ "iand or ior ishft shiftl" \ "shiftr cvmgm cvmgn cvmgp cvmgt" \ "cvmgz", orig) }						: . b .	:		N N
"iand or ior ishft shiftl" \ "shiftr cvmgm cvmgn cvmgp cvmgt" \ "cvmgz", orig) }									N N
"shiftr cvmgm cvmgn cvmgp cvmgt" \ "cvmgz", orig) }									$\langle \rangle$
"cvmgz", }									ì
}					c vingin	C ving n	c ving p	c v mg t	()
		}		c v ing 2 ,					0115)
{ for $(i = 1; i \le n; i++)$,							
		{	for (i	= 1; i	<= n; i+	+)			
gsub(mod[i],orig[i])			gs	sub(mod[i],orig[i])			
print			рг	·int	-				
} '		}	,						

Figure 12.1. Filter for Removing Suffixed @ Symbols in fpp Output

12.4.4 flint

flint (Fortran-lint) is third-party software which performs a global analysis of Fortran source code and reports a wide range of actual and potential problems and instances of poor programming practice. There are many options to govern its specific behavior. flint with neither options nor file names produces a help screen. flint -demo executes a small demonstration case. man flint yields the man page. A hard copy manual which provides the same information as the man page, but in greater detail, is available.

13. Interlanguage Communication

The considerations expressed in this chapter apply in general to programs whose source codes incorporate more than one language, but the specific techniques pertain to the ARLSCF Cray computers. By the very nature of the topic, much of the material is not within any standard, but certain parts could easily be restricted thereto, e.g., Fortran names could be restricted to being no longer than six characters (ANSI Standard Fortran 77).

For convenience, "program" refers to any portion of a program: the entire program, a main program, subroutines, functions, etc.

Additional information may be found in the Cray publications, UNICOS Fortran Library Reference Manual, SR-2079 6.0 (Sections 1 and 8, and Appendix A), UNICOS Standard C Library Reference Manual, SR-2080 6.0, (Interlanguage Communications), UNICOS Math and Scientific Library Reference Manual, SR-2081 6.0, Cray Standard C Programmer's Reference Manual, SR-2074 3.0, CF77 Compiling System, Volume 1: Fortran Reference Manual, SR-3071 5.0, and Interlanguage Programming Conventions Technical Note, SN-3009.

13.1 Fortran and C

This section presumes CF77, version 5, and the Cray Standard C Compiler, version 3. Earlier compilers may be more restrictive.

In general, the burden of interlanguage communication rests on the C portions of the program; the Fortran portions are written as if they were communicating with other Fortran programs.

13.1.1 Obscure Restriction

There is an ANSI Standard Fortran 77 restriction that dummy arguments, or dummy arguments and entities in COMMON, whose storage is made to overlap by virtue of their association with particular actual arguments, must not have their values changed within the referenced subprogram. For example, calling

SUBROUTINE SUB(A,B)

with

CALL SUB(C,C)

or calling

SUBROUTINE SUB(A) COMMON /XXX/ B

with

COMMON /xxx/ C ... CALL SUB(C) causes overlap between A and B. In either case, the values of A and B must not be changed within the subroutine.

This restriction is extended in Cray Fortran 77 as follows. If the storage of a pointer dereference overlaps the storage of another variable, dummy argument, or pointer dereference, then neither may be modified within that Fortran program.

This restriction does not apply to programs written entirely in ANSI Standard C. The ANSI C standard specifies the exact sequence in which operations are to be performed; therefore, there is no ambiguity concerning which value will be resident in a memory location after the execution of C code equivalent to the Fortran example just presented.

The restriction does apply to Fortran programs invoked by C programs, but not vice versa.

Optimization in general, and in particular each of Cray scalar optimization, vectorization, and parallelization, abrogate the C standard's requirements concerning order of operations (except, of course, that the computation still must be algebraically correct, within precision limits), and so, if there is optimization, the Fortran-like restriction is asserted even in otherwise standard C programs.

Finally, there is a known bug in the Cray Standard C compiler (release 3.0.4.8) which bears upon this topic. For example, the ANSI Standard C program

```
#include <stdio.h>
int com = 1;
sub(int *a){
    com = 2;
    com = *a;
}
main(){
    sub(&com);
    printf("%d\n", com);
    return 0;
}
```

even when compiled with the -h stdc option, prints 1, whereas it should print 2. A workaround is to program in Standard C as if the Fortran restriction applied. The bug is scheduled for correction in a future release (cc -V reports the currently installed version of the C compiler).

13.1.2 Invoking Subprograms

13.1.2.1 Names

Acceptable Fortran names are a subset of acceptable C names. Fortran names are restricted to 31 characters consisting of letters, digits, and the underscore character. The first character must be a letter. Fortran maps all lower case letters into upper case, except for values in character strings. In addition, Fortran will accept certain special characters in global names (functions, subroutines, common blocks), but Fortran programmers should not utilize this feature in creating their own global names. Therefore, the names of C functions invoked from Fortran are restricted to be no longer than 31 characters consisting of upper case letters, digits, and the underscore, and beginning with a letter.

C functions invoked from Fortran are declared either implicitly by use or explicitly with an EXTERNAL statement.

The names of Fortran subprograms invoked from C suffer no restrictions beyond normal Fortran requirements. Because Fortran maps lower case letters into upper case, the name by which the program is invoked in C must be upper case, regardless of any lower case which might have been used in writing the Fortran subprogram. C programs invoking Fortran programs should declare them with the storage class keyword fortran, as in

```
fortran double function_name (...)
```

13.1.2.2 Arguments

Fortran always associates actual and dummy arguments by address. By default, C associates actual and dummy arguments by value, unless they are arrays or executables, in which case they are always associated by address. Therefore, when C and Fortran invoke each other, C programs passing actual arguments other than executables and arrays to Fortran must do so explicitly by address, and C programs receiving actual arguments other than executables and arrays from Fortran must treat the associated dummy arguments as pointers. C and Fortran programs may pass/receive arrays to/from each other just as they normally do (because both use pass by address in this case); however, see the paragraphs concerning names, arrays, and types. Similarly, because both languages pass subprograms by address, C and Fortran programs may pass/receive subprogram names to/from each other just as they normally do; however, see the paragraphs concerning names, arrays, and types. As calling sequences become more intricate, particular attention must be devoted to insuring that arguments always are passed/received according to the proper semantics.

The value returned by a Fortran function is a value, not an address.

Fortran subroutines can be invoked from C as if they were Fortran functions, with the sole difference that they do not return a value. Therefore, C programs invoking Fortran subroutines should declare them to be of type void.

13.1.3 Data Types

C	Fortran	bits		
C	rortran	information	memory	
char		8	8	
short	1	24/32	64	
int	INTEGER	46/64	64	
long	INTEGER	64	64	
float	REAL	64	64	
double	REAL	64	64	
long double	DOUBLE PRECISION	128	128	
float complex	COMPLEX	64,64	128	
double complex	COMPLEX	64,64	128	
-	LOGICAL	1	64	
	CHARACTER	vari	able	

13.1.3.1 Correspondence of Types

13.1.3.2 Fully Compatible

Fortran INTEGER, REAL, and COMPLEX values can be shared directly (by passing as arguments or through structures and COMMON blocks) with C int and long, flost and double, and float complex and double complex, values, respectively.

13.1.3.3 Almost Fully Compatible – Double Precision

Fortran DOUBLE PRECISION values can be shared directly (by passing as arguments or through structures and COMMON blocks) with C long double values, as long as the Fortran compilation does not disable DOUBLE PRECISION.

13.1.3.4 Almost Fully Compatible – Pointers

Fortran POINTER values can be shared directly with those C pointer values which are word addresses.

13.1.3.5 Convertible – Logical Values

When C and Fortran are to communicate logical values to each other, the C program units should incorporate the statement

include <fortran.h>

The fortran.h header file provides the functions

- _btol() returns the long int values, Fortran .FALSE. and Fortran .TRUE., for the long int arguments 0 and nonzero, respectively.
- _ltob () returns the long int values, 0 and 1, for the arguments, address of a Fortran .FALSE., and, address of a Fortran .TRUE., respectively.

Figure 13.1 presents a simple C and Fortran program exemplifying the use of these features. A few blank lines have been added to improve readability. Note the _ltob invocations in CFCN – the arguments are addresses by virtue of the invocation of CFCN from Fortran. Had the _ltob invocations been in main, their arguments, unlike those of _btol, would have been prefixed with &.

13.1.3.6 Convertible – Character Values

Both Fortran and C support character strings, but with different semantics.

Character strings used in Fortran programs are generally stored in CHARACTER variables or arrays thereof rather than in arrays of single characters. CHARACTER data is allocated in such a way that the same amount of storage is allocated by each of the following statements, which define a CHARAC-TER variable of length 80 (A), a CHARACTER array of 80 elements, each of length 1 (B), and a CHARACTER array of 16 elements, each of length 5 (C):

CHARACTER A*80, B(80)*1, C(16)*5

A CHARACTER dummy argument can be defined as

CHARACTER*(*)

which means that the length of the argument is not available at compile time and will be passed to the program at execution time.

In general, Fortran CHARACTER entities (scalars, individual array elements, and substrings thereof) are not restricted to beginning on word boundaries. Fortran CHARACTER entities have an associated length which specifies the number of characters in the entity. A CHARACTER dummy argument can be associated with any CHARACTER entity. A CHARACTER actual argument is a descriptor containing the word address, the bit offset, and the number of characters in the entity.

C does not support a character string type, but, by convention, C **char**acter pointers point to character strings terminated with a zero byte, and several functions in the C library process such character strings. C may allocate character storage which does not begin on word boundaries. A C **char**acter pointer, like a Fortran **CHARACTER** descriptor, contains a character location, but, unlike the descriptor, it does not

```
patton> cat logical1.c
# include <stdio.h>
# include <fortran.h>
# define TRUE 1
                                  /* the C convention */
# define FALSE 0
                                  /* the C convention */
fortran int FFCN (long int *, long int *);
main ()
{
    long int ctrue, cfalse, ftrue, ffalse;
    int rtnval;
    ctrue = TRUE;
    cfalse = FALSE;
    ftrue = \_btol(ctrue);
    ffalse = \_btol(cfalse);
    printf ("\n ctrue, cfalse = %d, %d\n", ctrue, cfalse);
printf (" ftrue, ffalse = %d, %d\n", ftrue, ffalse);
printf (" ******** end main - begin FFCN *******\n");
    rtnval = FFCN (&ftrue, &ffalse);
}
patton> cat logical2.f
        INTEGER FUNCTION FFCN (A, B)
        LOGICAL A, B, C, D
        INTEGER CFCN, RTNVAL
       DATA C, D / . TRUE . , . FALSE . /
       WRITE (*,*) 'A, B = ', A, B
WRITE (*,*) 'C, D = ', C, D
WRITE (*,*) '******** end FFCN - begin CFCN *********
       WRITE (*,*) 'A,
       RTNVAL = CFCN (C, D)
       FFCN = 0
       RETURN
       END
patton> cat logical3.c
# include <stdio.h>
# include <fortran.h>
CFCN (e, f)
long int *e, *f;
{
   long int ce, cf;
```

13 - 5

```
= \% d,
   printf ("e,
                        f
                                       %d n'', *e, *f);
   ce = -ltob(e);
   cf = -ltob(f);
                                        %d\n", ce, cf);
   printf (" ce,
                       cf
                                   %d ,
}
patton> cc -c *.c
logical1.c:
logical3.c:
patton> cf77 - c * . f
logical2.f:
patton> segldr *.o
patton> ./a.out
 ctrue, cfalse = 1,
                          0
 ftrue, ffalse = -1,
                          0
 ******** end main - begin FFCN ******
                          \mathbf{F}
 Α,
         В
                 ===
                     Τ,
                          \mathbf{F}
         D
                     Τ,
                  =
 С,
 ******* end FFCN - begin CFCN ********
         f
                 = -1,
                          0
 е,
         \mathbf{c} \mathbf{f}
                 ==
                     1,
                          0
 се,
patton>
```

Figure 13.1. C and Fortran Communication – Logical Values

contain a length; therefore, it cannot be passed to a Fortran program which expects a CHARACTER argument.

When C and Fortran are to communicate character values to each other, the C program units should incorporate the statement

include <fortran.h>

The fortran.h header file provides the type and the functions

_fcd	defined type which matches the Fortran CHARACTER descriptor. An object with type _fcd can be passed to or received from a Fortran program whose corresponding dummy or actual argument has type CHARACTERfcd is not guaranteed to work in casts.
_cptofcd (ccp,len)	returns a Fortran CHARACTER descriptor from the C character pointer <i>ccp</i> and unsigned byte length <i>len</i> . The resulting descriptor points to the same string as <i>ccp</i> and can be passed to a Fortran program expecting a CHARACTER entity.
_fcdtocp (fcd)	returns a C character pointer from <i>fcd</i> . <i>fcd</i> is of type _fcd and is effectively a Fortran CHARACTER descriptor.
_fcdlen (fcd)	returns the byte length from <i>fcd</i> . <i>fcd</i> is of type _fcd and is effectively a Fortran CHARACTER descriptor.

Figure 13.2 presents a simple C and Fortran program exemplifying the use of these features. A few blank lines have been added to improve readability.

```
patton> cat string1.c
# include <stdio.h>
# include <string.h>
# include <fortran.h>
fortran int FFCN (_fcd,_fcd);
main ()
{
   int clen1, clen2;
   char *cstring1 = "string1", *cstring2 = "string.2";
   int rtnval;
   clen1 = strlen(cstring1);
   clen 2 = strlen(cstring 2);
   printf ("\n >%s< %d\n", cstring1, clen1);
   printf (" >%s< %d\n", cstring2, clen2);</pre>
   printf (" ******** end main - begin FFCN *******\n");
   rtnval = FFCN (_cptofcd(cstring1, clen1), _cptofcd(cstring2, clen2
}
patton> cat string2.f
      INTEGER FUNCTION FFCN (A, B)
      CHARACTER * (*) A, B
      CHARACTER * (20) C, D, E
      INTEGER FLEN1, FLEN2, FLEN3, FLEN4, FLEN5
      INTEGER CFCN, RTNVAL
      DATA C,D,E /'string...3', 'string...4', 'string....5'/
      FLEN1 = LEN(A)
      FLEN2 = LEN(B)
      FLEN3 = LEN(C)
      FLEN4 = LEN(D)
      FLEN5 = LEN(E)
                   `>`, A, `< `,FLEN1
`>`, B, `< `,FLEN2
`>`, C, `< `,FLEN3
`>`, D, `< `,FLEN4</pre>
                                , r LEN1
, FLEN2
      WRITE (*, *)
      WRITE (*, *)
      WRITE (*,*)
                                 , FLEN4
, FLEN5
      WRITE (*,*)
                    ´>´, E, ´<
      WRITE (*,*)
      WRITE (*,*) '******** end FFCN - begin CFCN **********
      RTNVAL = CFCN(C, D, E)
      FFCN = 0
      RETURN
      END
```

```
patton> cat string3.c
# include <stdio.h>
# include <string.h>
# include <fortran.h>
CFCN (fstring3, fstring4, fstring5)
_fcd fstring3, fstring4, fstring5;
{
    int clen3, clen4, clen5, cclen3, cclen4, cclen5;
    char *cstring3, *cstring4, *cstring5;
    cstring3 = \_fcdtocp (fstring3);
           = -fcdlen (fstring3);
    clen3
    cclen3
              = strlen
                           (fstring3);
   \operatorname{cstring4} = -\operatorname{fcdtocp}(\operatorname{fstring4});
    \operatorname{cstring4}[10] = 10^{\circ};
   clen4
              = -fcdlen (fstring4);
   cclen4
              = strlen
                           (fstring4);
   cstring5 = -fcdtocp (fstring5);
   \operatorname{cstring5}[11] = ' \setminus 0';
    clen5
             = -fcdlen (fstring5);
   cclen5
              = strlen
                           (fstring5);
   printf (" >%s< %d\n", cstring3, clen3, cclen3);
printf (" >%s< %d\n", cstring4, clen4, cclen4);</pre>
   printf (" >%s< %d\n", cstring5, clen5, cclen5);</pre>
}
patton> cc -c *.c
stringl.c:
string3.c:
patton> cf77 - c * . f
string2.f:
patton> segldr *.o
patton> ./a.out
 >string1< 7
 > string. 2< 8
 ****** end main - begin FFCN *********
 >string1< 7
 >string.2< 8
 >string..3
                          <
                             20
 >string...4
                             20
                          <
 >string...5
                          < 20
 ******** end FFCN - begin CFCN ********
 >string..3
                          < 20
                                 20
 >string...4< 20
                      10
>string....5< 20
                      11
patton>
```

Figure 13.2. C and Fortran Communication - Character Values

Note the three lines of output from CFCN. In each case, <u>fcdlen</u> returns the string length as it is known to the Fortran CHARACTER descriptor. The length of the C string, not including the terminating zero byte, is returned by strlen. Note also that printf output 20 characters for cstring3, but 10 and 11, respectively, for cstring4 and cstring5. This is because FFCN padded strings C, D, and E out to 20 characters with blanks. The 21^{st} character in each string is a zero byte, and the first zero byte terminates the action of printf. (Recall that each of the Fortran strings is simply a local variable and so begins on a word boundary. Each occupies three words with the rightmost 32 bits of the third word left unused. By default, those 32 bits are zero filled.) printf output fewer characters for cstring4 and cstring5 because zero bytes were explicitly placed at their 11^{th} and 12^{th} (subscript values 10 and 11) character positions, respectively. cstring1 and cstring2, in main, are zero byte terminated in the eighth and ninth character positions by virtue of the ", as opposed to ', in the char statement.

13.1.4 Arrays

In Fortran, the array subscript lower and upper bounds may be declared explicitly, or only the upper bound be declared explicitly and the lower bound default to 1, in which case the upper bound has the same value as the array size along that dimension. Fortran stores arrays in such a way that, as one progresses sequentially from lower address elements to higher address elements, it is the leftmost subscript which is incremented most rapidly. This is often, and erroneously, identified as "column major" order.

In C, array lower bounds are always zero. C stores arrays in such a way that, as one progresses sequentially from lower address elements to higher address elements, it is the rightmost subscript which is incremented most rapidly. This is often, and erroneously, identified as "row major" order.

When arrays are shared between C and Fortran, by passing them as arguments or through common blocks,

- The subscript bounds may vary from program to program, but the size of the array must remain the same.
- One-dimensional arrays require no special care with respect to the sequence of their elements because there is only one subscript. They can be shared directly, and only the possible differences in the subscript lower bound values need be accounted for.
- Multidimensional arrays, in addition to having the possible differences in the subscript lower bound values accounted for, must have the order of their dimensions reversed in the definitions and the order of their subscripts reversed in the executable statements in one or the other of C and Fortran, and the size of the array along each (transposed) dimension must be the same in both languages, if corresponding elements are to be conveniently addressable in the two languages. Multidimensional arrays defined in C and passed to Cray math and science library programs, in addition to having the possible differences in the subscript lower bound values accounted for, must have the order of their dimensions reversed in the definitions and the order of their subscripts reversed in the executable statements in the C in order to conform to Fortran's storage convention, which is used by the Cray math and science library programs.

For example, a Fortran array defined as

INTEGER A (20,0:10)

could be defined in C code as:

int b[11][20];

Then, the same value could be accessed from Fortran as, e.g., A(2,7) and from C as b[7][1].

• Arrays of characters and especially of strings can present formidable difficulty and should not be passed between C and Fortran (except, of course, that a Fortran string converts to a C onedimensional character array, and vice versa). Arrays of the other types already discussed can be passed between C and Fortran as long as each array element occupies the same amount of storage Interlanguage Communication

in each language. In particular, this requires that DOUBLE PRECISION not be disabled in the Fortran compilation.

13.1.5 Fortran COMMON and C External Variables

C external variables defined in a structure are accessible from Fortran in named COMMON blocks, and vice versa. For example,

> struct { int i; long double d; float a[10];} ST; main() { . . . SUBROUTINE FCTN COMMON /ST/STI, STD, STA(0:9)INTEGER STI DOUBLE PRECISION STD REAL STA

both refer to the same defined entities in the expected way. Note that the correspondence is positional within the structure/block, and that, because of the long double/DOUBLE PRECISION variable, the Fortran compilation must not disable DOUBLE PRECISION.

. . .

14. Debugging Tools

14.1 dbx

Available on the ARLSCF computers except for the Crays. Execute **man dbx** on the desired computer for detailed information.

14.2 cdbx

The cdbx package is a tool for source level, interactive, symbolic debugging of programs running under UNICOS. It is based on dbx, provided with the Fourth Berkeley Software Distribution; dbx itself, however, is no longer supported by UNICOS. On the Crays, the command, dbx, has become a synonym for cdbx. cdbx can be used with C, CAL, CFT77, and Pascal programs. Those parts of a program to which one intends to apply cdbx must be compiled using special compiler options, which cause the generation of internal tables permitting the tracing of program execution via those symbolic names originally used by the programmer. Clearly, it is of great benefit when those names are mnemonic and when individual names are not used to represent a number of logically different entities.

cdbx may be used in a line-oriented mode or in the X Window System interface mode. The user may choose his interface via an environment variable or explicitly on the command line. In addition, a user may create an initialization file governing the initial actions of cdbx. cdbx searches for this file upon invocation first as .cdbxinit and then as .dbxinit, first in the current directory and then in the home directory. In addition, X Window System users may customize that environment with cdbx specific entries in their .Xdefaults file.

Detailed information may be found in the on-line manual pages and in the Cray publications, UNICOS CDBX Debugger User's Guide, SG-2094 6.0, and UNICOS CDBX Symbolic Debugger Reference Manual, SR-2091 6.1.

14.2.1 Syntax and Options

cdbx [-c corefile] [-e efile] [-f fname] [-h restartfile] [-I dir] [-1 lfile] [-L] [-p pid] [-r] [-s symfile] [-V] [X-Toolkit-options] [commandline]

- -c corefile Names the corefile (default core, created upon abnormal termination of the user program) to be examined. Related command: examine.
- -e efile Causes cdbx to echo all its inputs to file efile. Related command: echo.
- -f fname Names file fname to be examined or modified in a nonsymbolic manner. This can be any file; it need not represent a program or a program image. Related command: fedit.
- -h restartfile Names file restart which, upon invocation of cdbx, is restored to a running process under cdbx control. In general, the restrictions which apply to UNICOS restart files (execute man chkpnt) apply to restartfile. Related commands: save and restore.

- -I dir Adds dir to the list of directories to be searched by cdbx when a file is required. By default cdbx searches the current directory and any directory specified in a file's path name on the cdbx command line. Related command: use.
- -1 lfile Causes cdbx to echo all its inputs and outputs to file lfile. Related command: log.
- -L Requests the line-oriented interface to cdbx. See the X Toolkit option display.
- -p pid Specifies the process id of a current process to be placed under cdbx control. Related commands: attach and detach.
- -r Begins execution of specified program or restart file under cdbx control. In the absence of errors, cdbx exits; otherwise, cdbx reports the error and issues the cdbx prompt.
- -s symfile Names file symfile which contains the symbolic information produced by the language processors and loader. The default is the file named on the command line or **a.out**.
- -V Causes cdbx to print its version, build, and copyright information.

X Toolkit options: X Window System arguments entered on the cdbx command line override values set in .Xdefaults.

	-bg color	Selects the window background color.
	-bd color	Selects the window border color.
	-bw number	Selects the window border width in pixels.
	-display display	Specifies the name of the desired X server.
	-fg color	Selects the text and graphics color.
	-fn font	Selects the display text font.
	-geometry geom	etry Selects the window's initial size and location.
	-iconic	Specifies that the application starts in an iconic state, subject to the window manager's interpretation of such a state.
	-name name	Selects the name under which resources for the application are to be found. Useful when using shell aliases to distinguish between invocations of an application; eliminates the need to create links to obtain a different name for the executable.
	-rv	Simulates reverse video if possible, sometimes by swapping fore- ground and background colors. Usually for monochromatic displays, and may not be implemented correctly on all systems.
	+rv	Prevents simulation of reverse video. Useful for overriding related defaults if reverse video does not work correctly.
	-title string	Selects the window title.
	—xrm resourcestra	ing Selects a resource name and value to override defaults. Can be used to set resources which have no explicit commandline options/arguments.
in	e The entire comm	and line which normally invokes the program including options

commandline The entire command line which normally invokes the program, including options, arguments, and redirection. There must be white space before each redirection. Must be enclosed in double quotes (") to protect it from the shell, unless it consists of only the executable's name. Related commands: **run** and **rerun**.

When invoked with neither options nor arguments, cdbx searches the current directory for file **a.out**, using it for the necessary symbolic information to begin debugging. cdbx also searches the current directory for file **core**, using it as the initial image for debugging. If file **core** is not found, **a.out** provides the initial debug image.

Generally, only one image is specified. If multiple images are specified with command line options, **cdbx** selects the first one encountered in the order: image specified by $-\mathbf{p}$, $-\mathbf{h}$, $-\mathbf{c}$, or by $-\mathbf{f}$ (in that order), the executable named in *commandline* with $-\mathbf{r}$, **a.out** from the current directory with $-\mathbf{r}$, **core** from the current directory, the executable named in *commandline*, or **a.out** from the current directory.

14.2.2 Commands

After cdbx has been initialized, its actions are controlled by a series of commands, of which the more basic ones are summarized below. The commands summarized here provide, among other things, the abilities to

- query the program for the entities of which it is cognizant
- query the program for values and characteristics of entities
- run the program in its entirety, in part, or one source line at a time
- run the program until some specific condition obtains, including any change in the value of a variable
- automatically query the program for values of variables whenever some condition obtains, including any change in the value of a variable
- execute shell commands from within cdbx

Note that, in large part, cdbx respects the locality of variables and other symbols. Hence, for example, dump in a subprogram will not yield the same information as in its invoker.

Most of the commands perform the desired task when they are typed, but **stop**, **trace**, and **when** generate other instructions which are executed later, when the program of interest executes under **cdbx** control. Furthermore, depending upon their usage, these commands may cause repetitive testing during execution, and this can dramatically slow the execution of a program, particularly if it is large or if the machine load is heavy. A more detailed treatment of the entire command suite is available using **cdbx**'s help command. Detailed information is available in the references previously cited.

/[regular_expression] Search forward in the current source file for regular_expression. Defaults to most recent regular_expression.

- ?[regular_expression] Search backward in the current source file for regular_expression. Defaults to most recent regular_expression.
- assign variable = expression Set variable to the value of expression.
- cont Resume execution from the current location.
- delete [args] Remove active stop, trace, and when commands. args is a comma-separated list of designators of such commands. status displays all such commands in effect.

do

```
do i = m1, m2 [,m3] \{commands\}
do while condition \{commands\}
```

Execute commands n=max(int((m2-m1+m3)/m3),0) times (expressed in Fortran notation), or while condition is true. *i* must not be a program variable. The *m*'s must be integers. *ms* defaults to 1. condition must return a Boolean result. commands is a semicolon separated list.

- down [n] / up [n] Move down/up the calling tree (away from/toward the main program) by n calls, default 1.
- dump [name] Display the names and values of all variables in the named program unit, common block, or module. name defaults to all active program units.
- echo [file] / unecho / log [file] / unlog Begin/end echoing or logging the cdbx session to file, various defaults. The difference is that echoing copies cdbx commands, while logging copies cdbx commands and output.

- edit [name] Invoke an editor (selected by the environment) for the current source file (default), or file name, or the file containing program unit name. Saving the edited file is to disk, not to cdbx's current file.
- explain [[dbg]n] Provide additional information about cdbx diagnostic message dbgnum. Defaults to the most recent diagnostic.
- file file Change to source file file. Affects the line numbers and labels used by stop and trace. With no argument, displays the name of the current source file.
- **func** [name] Change the current program unit, but not the execution pointer, to the most recent execution of program unit name. Thus, after a **func** name, **dump** shows values known to name, and step acts as if no **func** had been issued. Without an argument, displays the name of the current program unit.
- gripe Send a message to the system person responsible for cdbx. Text is neither echoed nor logged.
- help [list] Invoke help for a comma-separated list of cdbx commands and other topics. Without list, a list of all topics is displayed.
- if condition then {commands} [else {other_commands}] Execute commands if condition is true, otherwise execute other_commands. condition must return a Boolean result. commands is a semicolon separated list.
- list [name|n1[,n2]] List the next 10 lines of the current source file (default), or 10 lines centered about the first executable line of program unit *name*, or line number *n1*, or line numbers *n1* through *n2*. *n1* and *n2* may be integers, . (current line), or $.\pm n$. **0** is a synonym for the line number of the last line.
- log [file] / unlog / echo [file] / unecho Begin/end logging or echoing the cdbx session to file, various defaults. The difference is that logging copies cdbx commands and output, while echoing copies cdbx commands.
- menu / unmenu Add/delete an item to/from the X Window command menu. See the references.
- next [n] / step [n] Execute the next n source lines, default 1. The difference is that, when the next source line is a subprogram (and that subprogram was compiled with debug symbol table information), step "steps" through the subprogram, whereas next executes the subprogram in its entirety and resumes stepping only after the source language return. Both commands temporarily disable stops.
- print expressions Display the values of the comma-separated expressions.
- printf [(]"format"[,expressions][)] Same as print expressions, but in C style, with C style formatting, except that %c is not available.
- psym symbol Display information about symbol.
- quit End the cdbx session.
- [re]run [args] Execute the program from the beginning, creating a new program image. Without arguments, run uses the preceding execution's argument set, including redirection, whereas rerun clears that set. With arguments, run and rerun function identically, replacing the preceding argument set in its entirety with args. args is any set of the kinds of items in cdbx's commandline argument, not including the executable name.
- return [name] Provide a quick escape from a subprogram through which one is stepping. Effectively a cont, but only through the next source language return, or through the source language return to program unit name.
- seg List the segments of a segmented program and note which are resident in memory.
- **sh** [string] Invoke a shell to execute UNICOS commands. string is the command string. string defaults to interactive input. Output is not logged.

show type	Display a list of symbols of the type specified in the current program unit, as provided
	by the symbol table. type is commons, labels, lines, scopes, or vars.

source file Cause cdbx to read commands from file.

status Display the currently active stop, trace, and when commands.

- step [n] / next [n] Execute the next n source lines, default 1. The difference is that, when the next source line is a subprogram (and that subprogram was compiled with debug symbol table information), step steps through the subprogram, whereas next executes the subprogram in its entirety and resumes stepping only after the source language return. Both commands temporarily disable stops.
- stop
 stop

 stop if condition
 stop at line [if condition]

 stop in program_unit [if condition]
 stop var [if condition]

 Stop var [if condition]
 Set a breakpoint at which execution will be stopped unconditionally, or whenever condition is true, or at the source line number or label, or upon entry to the program unit

dition is true, or at the source line number or label, or upon entry to the program unit, or whenever the variable's value changes. *condition* must return a Boolean result.

switch symfile Equivalent to exiting cdbx and then executing cdbx symfile, where symfile is an executable, but without leaving cdbx.

trace trace

trace if condition trace in process [if condition] trace at line [if condition] trace var [if condition] [in process] trace expr at line [if condition] trace procedure [if condition] [in process] Display tracing information throughout as

Display tracing information throughout execution, or whenever *condition* is true, or whenever the process is active, or display the source at the line number or label whenever that line is executed, or display the value of the variable whenever it changes, or display the value of the expression whenever execution reaches the line number or label, or display calling information whenever *procedure* is invoked and return information upon executing the source language return. *condition* must return a Boolean result.

- unecho / echo [file] / unlog / log [file] End/begin echoing or logging the cdbx session to file file, various defaults. The difference is that echoing copies cdbx commands, while logging copies cdbx commands and output.
- unlog / log [file] / unecho / echo [file] End/begin logging or echoing the cdbx session to file file, various defaults. The difference is that logging copies cdbx commands and output, while echoing copies cdbx commands.

unmenu / menu Delete/add an item from/to the X Window command menu. See the references.

up [n] / down [n] Move up/down the calling tree (toward/away from the main program) by n calls, default 1.

what is symbol Display the declaration of symbol.

when condition {commands}
 when in procedure {commands}
 when at line {commands}
 During execution, execute commands whenever condition is true, or whenever procedure is invoked, or whenever execution reaches the line number or label. condition must return a Boolean result. commands is a semicolon-separated list.

where [n]Display the calling tree (traceback) for the most recent n calls, default 100.where is nameDisplay the full qualification of all symbols with name.

14.3 debug

debug is a batch-oriented tool for symbolic debugging under UNICOS. It produces a snapshot dump of a running program. The -D option is required at compilation time to produce the necessary symbol table. By default, debug assumes names core for the corefile and **a.out** for the executable and sends its analysis to standard out. Detailed information is available by executing **man debug** and in the Cray publication, UNICOS User Commands Reference Manual, SR-2011 6.0.

14.4 symdump

symdump is a Cray library routine which produces the same sort of output as does **debug**, that is, a snapshot dump of a running program. It is invoked from within a program with language dependent syntax. For example, it is invoked from within a Fortran program by:

CALL SYMDUMP [(`options/arguments' [,abort_flag])]

By default, SYMDUMP examines the options and reports errors, but does not cause the program to abort. segldr option -1 libdb.a or an equivalent is required.

Detailed information is available in the Cray publication, Volume 1: UNICOS Fortran Library Reference Manual, SR-2079 6.0, and by executing man symdump.

14.5 adb

The adb command invokes the UNIX absolute debugger, which permits a user to examine core files from crashed systems or aborted programs. adb is interactive, allows access to global variables, and provides output in several formats. Detailed information for the Cray computers is available in the Cray publication, UNICOS User Commands Reference Manual, SR-2011 6.0, and for all ARLSCF computers by executing man adb.

14.6 lint

lint attempts to detect features of portable C source code which are likely to be bugs, nonportable, or inefficient. lint performs type checking more strictly than the compiler, detects unreachable statements, logical expressions whose value is constant, loops not entered at the top, and variables declared but not used. Detailed information for the Cray computers is available in the Cray publication, UNICOS User Commands Reference Manual, SR-2011 6.0, and for all ARLSCF computers by executing man lint.

14.7 flint

flint (Fortran-lint) is third-party software which performs a global analysis of Fortran source code and reports a wide range of actual and potential problems and instances of poor programming practice. It is, more or less, the Fortran equivalent of lint. There are many options to govern its specific behavior. flint with neither options nor file names produces a help screen. flint -demo runs a small demonstration case. man flint yields the man page. A hard copy manual which provides the same information as the man page, but in greater detail, is available.

Intentionally Left Blank

15. Optimizing Cray Programs – Preprocessors

This chapter applies specifically to the ARLSCF Cray computers. Run time efficiency is a prime objective of the Cray compiling systems. Even with default options, Cray compilers produce optimized object code. There are various additional options which can produce even greater optimization, including generating object code which makes efficient use of multiple processors. An important consideration in optimization is that the programmer avoid writing source code containing certain features which inhibit optimization.

15.1 Analyzing a Program and Its Performance

This section introduces UNICOS tools which assist a programmer in determining and improving the efficiency of a program. With the exception of **ftref**, which is designed for Fortran programs, these tools are usable with the various languages supported by UNICOS. All the examples are expressed in terms of Fortran and the Bourne shell. Detailed information may be found in the on-line manual pages and in the Cray publication, UNICOS Performance Utilities Reference Manual, SR-2040 6.0.

15.1.1 Analyzing Fortran Source Code – ftref

ftref statically analyzes source code to show program structure, common block usage, and information specific to multitasking.

ftref has a number of directives and command line options. The following is a simple example of ftref's use to obtain common block references (-c full) and a full call tree (-t full). Note the -c option on the ef77 command; the loader is not invoked, because ftref performs only a static analysis, using as its input the compiler's listing output.

cf77 -c -Wf"-esx" program.f ftref -c full -t full program.l > program.ref

Large call trees can be trimmed with options:

-l n Add to restrict -t full to the first n levels.

-r subprogram Add to restrict -t full to the subtree rooted at subprogram.

-t part Substitute to output certain calling information, but not the call tree itself.

15.1.2 Tracing and Timing Programs – Flowtrace

The Flowtrace feature prints calling and timing information about all or selected program units, as monitored during execution. Flowtrace adds considerable overhead, which may distort the results for quickly executing program units.

Optimizing Cray Programs - Preprocessors

To use Flowtrace,

- include -F on the cf77 command line to flowtrace the entire program, excluding desired program units with CDIR\$ NOFLOW directives in those subprograms, or
- do not include -F on the cf77 command line, and place CDIR\$ FLOW directives in the program units to be flowtraced.

Whenever flowtracing is done, the main program must be flowtraced if the percentages of execution time spent in various program units are to be reliable. This is not necessary to obtain reliable CPU cumulative times with the SETPLIMQ subroutine (see the following section, SETPLIMQ). Whenever FLOW/NOFLOW directives are used, their effect is limited to the program units in which they appear, and the last one within a program unit is effective for the entire program unit. The execution time of sub-programs which are not flowtraced will be included in the execution time of their nearest flowtraced invoker. In flowtraced programs, CALL EXIT and CALL ABORT must be replaced with STOP.

Flowtrace outputs its results to file flow.data, which is read by flowview. flowview has a number of options and environment variables, and has an X Window System interface. The command flowview by itself is sufficient for viewing flow.data within the X Window System, while

flowview -Luch > flow.report

is typical without it. -L suppresses the X Window System interface, and is required whenever command line options are used. **u**, **c**, and **h** affect the content and style of the report, and are probably the most frequently used options.

15.1.2.1 The FLOWMARK Subroutine

The FLOWMARK subroutine permits Flowtrace to treat sections of code within a program unit as if they themselves were subprograms. CALL FLOWMARK('name'L) initiates such a section and CALL FLOWMARK(0) terminates it. name serves as the pseudo-subprogram name, must be no longer than seven printable characters, and must contain no white space.

15.1.2.2 The SETPLIMQ Subroutine

Executing a CALL SETPLIMQ(n) causes every subsequently executed subprogram invocation and RETURN, within program units being flowtraced, to output to standard error a line containing invocation information and cumulative CPU time, up to a total of n lines. Within flowtraced portions of a program, the (potentially voluminous) SETPLIMQ output may be controlled by careful prediction of the desired n, or by bracketing important portions of the flowtraced code with CALL SETPLIMQ(n) and CALL SETPLIMQ(0). In this usage, the CALL SETPLIMQ(0) turns off the output, and n need be only "large enough."

Experience suggests that

- The program unit in which the CALL SETPLIMQ(n) resides need not itself be being flowtraced, unless that program unit is the main program.
- The CALL SETPLIMQ(n) may occur as many invoking levels as desired above the flowtraced program unit(s), separated from them by as many intervening NOFLOW program unit(s) as desired.
- The CALL SETPLIMQ(n) may occur as many invoking levels deep as desired in the invoking sequence, with some higher levels being flowtraced. Subsequent to execution of the CALL SETPLIMQ(n), information will be output for all flowtraced program units in the invoking sequence, even the ones at a higher level than the CALL SETPLIMQ(n).
- It is the invoked program unit, rather than its invoker, which must be being flowtraced in order to obtain information about the invoked program unit. Of course, the invoker also may be being flowtraced, and indeed must be if information concerning its invocation is to be obtained.

• If the immediate invoker is not being flowtraced, then the invoked program unit is said to have been invoked by its nearest invoker, with a corresponding stack depth. The invoker of the main program is ***SYSTEM**.

15.1.3 Timing A Program

"Profiling" provides a measure of the time spent in different parts of a program. The **time** command provides total execution time for a program. Neither of these methods adds any significant overhead, nor do they provide any call tree information.

15.1.3.1 Profiling

When the profiling library, libprof.a, is loaded with an executable, the portion of memory in which the executable resides is divided up into pieces of desired size, called "buckets." Bucket size is defined by the user's environmental variable, PROF_WPB, and may be as small as one machine word (default: four machine words). At regular intervals during execution, the operating system samples the program's address register and increments by 1 the "hit count" for the bucket encompassing that address. On the Cray X-MP only, the sampling rate may be changed by use of the environmental variable **PROF_RATE**. By default, **PROF_RATE** is set for the fastest rate. Upon normal termination, all the bucket counts are written to file **prof.data**. Executing **prof** -x merges the profiling statistics with symbol information from the original executable, for which the necessary compilation option must have been used. Finally, executing **profview**, which has an X Window System interface, provides a user-oriented display of the profiling statistics. Both **prof** and **profview** have a number of options and several environmental variables which influence their behavior. **prof** may even provide the final profiling output, if desired, but using **profview**, even without the X Window System, is the recommended technique. A simple example of profiling within an X Window System environment is:

cf77 -G -l prof program.f env PROF_WPB=1 ./a.out prof -x a.out > program.prof profview program.prof

The command

profview -LmhDc program.prof > prof.report

is typical of use without the X Window System. -L suppresses the X Window System interface, and is required whenever command line options are used.

15.1.3.2 time

time acts like a shell to run a program while measuring time expended. No special compile or load options are required in creating the executable. The command

time "commandline"

reports to standard error the total wall clock time from start to finish of *commandline*, the time spent in actual execution of *commandline*, and the time used by the operating system in the execution of *command-line*.

15.1.4 Monitoring Hardware Performance

The Hardware Performance Monitor hardware (available only on the Cray X-MP) monitors a number of hardware activities. Statistics concerning these activities can be accumulated by **hpm** for an entire

program and by **perftrace** for program units. These statistics provide an indication of how efficiently an executable utilizes the Cray X-MP's hardware capabilities.

15.1.4.1 Hardware Performance by Program - hpm

hpm acts like a shell to run a program while accruing statistics from the Hardware Performance Monitor hardware. No special compile or load options are required in creating the executable. Four separate runs are required to obtain all possible information, one to accrue data from each of four hardware monitor groups, **0** through **3**. For example, interfacing with the X Window System:

> hpm -r -g0 "commandline" 2> perf.data hpm -r -g1 "commandline" 2>> perf.data hpm -r -g2 "commandline" 2>> perf.data hpm -r -g3 "commandline" 2>> perf.data perfview

The command

perfview -LBuchM program.prof > hpm.report

is typical of use without the X Window System. -L suppresses the X Window System interface, and is required whenever command line options are used.

15.1.4.2 Machine Performance by Program Unit – Perftrace

Perftrace provides the same kinds of information given by hpm, but broken down by program unit, at the cost of significant overhead. Perftrace is not usable with multitasked programs. It is used similarly to Flowtrace (preceding); that is, the executable must be compiled with the -F option, loaded with the Perftrace library, libperf.a, and the FLOWMARK subroutine can be used to address parts of the executable rather than its entirety. Unlike hpm, a single execution is sufficient to accrue data from all four hardware monitor groups, and the data from several executions may be concatenated into one data file to enhance the accuracy of perfview's results. Note that the Perftrace library and hpm are incompatible.

The following example assumes an X Window System interface:

cf77 -F -l perf program.f ./a.out > program.perf perfview

The command

15 - 4

perfview -LBuchM program.perf > perftrace.report

is typical of use without the X Window System. -L suppresses the X Window System interface, and is required whenever command line options are used.

15.2 Vectorization – fpp

There are any number of programming techniques which are known to improve program performance in general. A particular technique which applies only to certain machines and compilers is known as "vectorization," and the machines and compilers to which it applies, as vector machines and vectorizing compilers. The Cray machines and compilers at the ARLSCF are vector machines and vectorizing compilers.

Vector processing is a form of parallel processing in which elements of an array are processed in groups, rather than individually. There are no overhead costs associated with interprocess communication because only one CPU is used. Vector processing may be combined with multitasking, wherein multiple CPUs are used.

Vectorization is the process of changing scalar (nonvector) operations to vector operations, and, for many applications, it is the most important optimization feature of a Cray compiling system. For example, on Cray machines, a vector loop typically executes an order of magnitude faster than an equivalent scalar loop. It is important that programmers write source code in such a manner as not to impede the compiling system's ability to recognize vectorizable logic.

The remainder of this section applies specifically to Cray vector processing. It assumes hardware characteristics specific to Cray computers, is expressed entirely in terms of Fortran, and is the briefest of introductions to a topic of considerable breadth.

Of itself, vectorization performed automatically by cf77 - Zv or manually by the user does not cause ANSI Standard Fortran 77 source code to become nonstandard, except that certain code sequences may be entirely replaced by calls to highly optimized library subroutines, and except that certain IF loops may be replaced by DO WHILE loops. The -Zv option invokes fpp, the Fortran dependence analyzer, prior to invoking cft77. Its product is an intermediate file of Fortran source code, restructured to some degree, with certain code sequences replaced by highly optimized library routines, and incorporating compiling system directives (all beginning with a C in column 1 so that they appear to other compilers to be comments) which implement vectorization and autotasking. fpp always prefers vectorizing to autotasking. The autotasking directives are ignored by cft77. For autotasking (and microtasking) directives to be effective, the Fortran multitasking translator, fmp, must be invoked before cft77. cf77's -Zp option invokes fpp and then fmp before cft77 to produce autotasked code. All forms of multitasking are discussed in a later section of this chapter.

Detailed information may be found in the on-line manual pages, in the Cray publications, CF77 Compiling System,

Volume 1: Fortran Reference Manual, SR-3071 5.0 Volume 2: Compiler Message Manual, SR-3072 5.0 Volume 3: Vectorization Guide, SG-3073 5.0 Volume 4: Parallel Processing Guide, SG-3074 5.0

and in the reference manuals pertinent to other languages.

Considerable detailed discussion of specific techniques applicable to specific programming situations, and many more examples than are presented herein, may be found in the Vectorization Guide. Before embarking upon the effort of detailed interaction with the vectorization process, the programmer should consider whether the potential return is worth the cost.

15.2.1 General Requirements for Vectorization

cf77 -Zv invokes the fpp preprocessor and the cft77 compiler to vectorize automatically a Fortran program.

To be vectorizable, a source code construct must be an array operation or an innermost loop. Array operations are Cray extensions to ANSI Standard Fortran 77 which treat entire arrays with the same syntax as if they were single variables. Such operations are inherently vectorizable. Oftentimes, an innermost loop and a few next-inner loops can be restructured by the programmer, or are restructured automatically by cf77 -Zv, so that all the resulting loops are innermost.

Vector and scalar versions of the loop must yield equivalent results. cf77 - Zv performs extraordinarily well in this respect. When cf77 - Zv errs, it does so by rejecting vectorization candidates which, despite their appearance, really are vectorizable because of the specific nature of the program at hand, because of the nature of the data to be processed, or for other reasons which are beyond its analytical capability. Often, the programmer may be able to restructure the code so that it will vectorize, or he may be able to use compiler directives to force the compiling system to vectorize the program.

The loop must not be "too complex." There is a tradeoff here. Smaller loops are more likely to be vectorized, but larger loops have less overhead than several equivalent smaller loops, and so yield better performance if they do vectorize.

15.2.1.1 Unvectorizable Code

Innermost loops containing any of the following cannot be vectorized:

- I/O statements, even though an implied DO list vectorizes.
- EXTERNALs which are not VFUNCTIONs and which are not expanded inline. VFUNC-TION is a compiler directive specifying that a vector form of an EXTERNAL, written in Cray Assembly Language, is available.
- Certain INTRINSIC functions.
- **RETURN**, **STOP**, or **PAUSE** statements. These should be replaced by branches out of the loop, to the statement.
- Arithmetic IFs, computed GOTOs, and assigned GOTOs.
- Backward branches entirely within the loop (other than the one forming the loop).
- A branch into the loop from its exterior (nonstandard in a DO loop).
- Any reference to any CHARACTER entity.
- Vector dependencies, with some exceptions.

15.2.1.2 Vector Dependencies

A vector dependency is an expression or group of expressions in a loop such that the results of later iterations depend upon results of earlier iterations. Certain vector dependencies can be vectorized. For example, $\mathbf{R} = \mathbf{R} + \mathbf{A}(\mathbf{I})$ within a loop is a "reduction" and can be partially vectorized. Partial sums of A are computed with vector code, then added together with scalar code.

Some vector dependencies have a threshold, that is, a number of iterations before dependency occurs. Consider a loop containing A(I) = A(I-6), and starting at 7 with an increment of 1. Such a construct has a threshold of 6. If the threshold is ignored, only the assignments into A(7) through A(12) are certain to be correct because the assignments into A(13) on out use the results of logically earlier assignments which may not yet be physically completed. For vectorization to be safe in such a situation, the vector length (the number of logical operations being physically accomplished at nearly the same time) must not be greater than the threshold. In the present example, performing the assignments in groups of 6 ensures that each succeeding group finds earlier results ready to be used. cf77 - Zv selects proper vector lengths (64 maximum) for thresholds greater than 2 and vectorizes. If the threshold cannot be determined at compile time, cf77 - Zv vectorizes with additional code to determine the safe vector length at execution time.

If necessary, cf77 - Zv will produce both a scalar and a vector version of a loop with an execution time selection test. For example, the following code produces a scalar loop and a vector loop, with the selection test, if II.LE.0 .OR. II.GE.N

15.2.1.3 Loops Containing IFs

Of themselves, the following do not prevent vectorization of loops:

- block IFs
- vectorizable IFs controlling a GOTO which transfers out of the loop
- logical IFs whose conditional statement either is not a branch or branches forward within the loop

15.2.1.4 Vectorizable Expressions and Statements

In general, vectorizable expressions are arithmetic or logical expressions and statements which are in innermost loops and which consist of combinations of:

Loop invariants	Constants or simple variables referenced but not redefined within the loop. An array element with a loop invariant as a subscript is itself a loop invari- ant.			
Scalar temporaries	Simple variables defined and later referenced within the loop, but not outside the loop.			
Loop counters	Integer variables incremented or decremented by an integer constant expres- sion on each pass through the loop. The only operators permitted in the expression are $+$ and $-$. If the result could alternate in sign, it inhibits vec- torization. A loop counter may be incremented or decremented more than once per pass if the effect on the loop is the same as some single assignment.			
Vector array references	References to array elements whose subscripts are not loop invariant.			
Invocations, with vectorizable expressions as arguments, of FUNCTIONs with vector versions.				

15.2.2 Some Other Considerations

15.2.2.1 Vectors

A vector is the basic operand for vectorized operations. It is an array, or a subset of an array, of not more than 64 elements. If more than 64 elements are involved for one operand in the desired computation, they are grouped into additional vectors, each with its own startup and ending overhead in the vectorized operation. Sometimes a sequence of vectorized operations can be chained together to reduce the overhead.

15.2.2.2 The Stride

The *stride* is the interval between memory locations for successive vector elements. Vectorization requires that the stride be constant for all the elements of a vector operand. Not only must the stride be constant, but also it is important that its value not cause memory contention.

15.2.2.3 Memory Contention

Memory on a Cray is arranged in distinct banks. When a memory location in a bank is accessed, that bank becomes unavailable for a certain number of clock periods, the "bank-busy" time. To avoid performance degradation, it is important that successive accesses to the same memory bank not occur within the bank-busy time. The Cray X-MP has 64 banks, and the Cray-2, 128. The **target** command yields the number of banks and the bank-busy time on either machine.

Introductory User Guide – May 1993

Optimizing Cray Programs - Preprocessors

Consider the following code on the Cray X-MP:

REAL A(256,100), B(256,100)
DO 20 I=1,256
DO 10 J=1,100
A(I,J) =
$$2.*B(I,J)$$

10 CONTINUE
20 CONTINUE

Array elements are accessed in the order A(1,1), A(1,2), A(1,3), Because 256 is a multiple of 64, all these accesses (until A(2,1)) are to the same bank, with terrible performance degradation. Were the two **DO** statements reversed, each access would be to a different bank, until A(65,1), at which point the bank access sequence repeats. In the reversed example, there is sufficient time between accesses to the same memory bank that there are no bank-busy delays.

A different solution is simply to increase the arrays' column lengths to 257, without reversing the order of the DO statements. The trip count is not changed, only the array dimensions. Memory accesses remain along the rows, but with a stride of 257, each successive access is to the next memory bank (257 modulo 64 = 1). Odd strides guarantee that successive memory accesses are not to the same memory bank.

15.2.3 User Interaction with Vectorization

The **fpp** preprocessor, invoked by **cf77**'s -Zv option, produces an intermediate source code file. The intermediate source code file conforms to the ANSI Fortran 77 standard as well as did the original code, except that certain code sequences may be entirely replaced by calls to highly optimized library subroutines, and except that certain IF loops may be replaced by **DO WHILE** loops. The differences between the two files consist of restructured code sequences, substituted code, and inserted compiler directives.

The user may select appropriate cf77 - Zv options to view the results of and, in some cases, rationale for fpp's processing, to influence or override fpp's processing, to retain fpp's output file, and to influence or override cft77's vectorizing. In addition, both fpp and cft77 understand directives which can provide very specific control over their processing. Partial listings of these options and directives are presented in following sections of this chapter.

A useful technique for the user desiring specific information about the optimization performed, or needing a point of departure for additional or different optimization, is to obtain the **fpp** and **cft77**—**em** listing outputs and the **fpp** intermediate source code output. These, of course, may be obtained directly from **cf77**.

15.2.3.1 fpp Options

15 - 8

These options are provided to fpp in the normal manner, or to cf77 in a -Wd"..." construct.

- -I subpgm1, subpgm2,... Lists subprograms which are to be expanded inline.
- -l file Enables the fpp listing and directs it to file.
- -M lines Specifies the maximum number of source lines allowed for automatic inline expansion; default 50.
- -o file Directs the intermediate source code file to file instead of to standard output. file is suitable for input to fmp or cft77.

-d offstring Disables or

- -e onstring Enables the following optimization switches:
 - **a** Permits associative transformations of code, for example, the vectorizing of a reduction. May cause slightly different results due to the inherent nonassociativity of **REAL** arithmetic. Default: enabled.
 - d Performs vector dependency checking. Default: enabled.
 - j Translates certain nested loop constructs, such as element-by-element matrix operations, into calls to highly optimized library routines. Default: enabled.
 - 1 Translates IF loops into DO loops, including nonstandard DO WHILE loops. Default: enabled.
 - m Generates alternative code for potential dependencies. Default: enabled.
 - s Permits loop splitting to isolate vector dependencies. Default: enabled.
 - t Uses aggressive criteria for vectorizing nested loops. Default: disabled.
 - v Enhances the subsequent cft77 vectorization. Default: enabled.
 - x Creates the intermediate source code file. If disabled, only the listing file is produced, at some saving of time and disk space. Default: enabled.
 - 6 Subprograms meeting certain criteria are expanded inline. The criteria are such that the code produced is always safe. Default: disabled.
 - 7 Subprograms meeting certain criteria are expanded inline. The criteria are such that the code produced is rarely unsafe. Default: disabled.

15.2.3.2 fpp Directives

These directives appear in the **fpp** or **cf77** input file and are interpreted by **fpp**. Their prefix of **CFPP\$** followed by at least one blank causes them to be comments for non-Cray compilers. Some are of form *directive/opposite_directive*. In such cases, the default is listed first. Some accept a trailing blank and then a scope parameter, which specifies the range of code to which the directive applies. Values of the scope parameter are:

- **R** Directive applies to end of current program unit.
- L Directive applies to next DO or DO WHILE (nonstandard) loop encountered. The default.
- **F** Directive applies to end of current file.
- I Directive applies at the current point in the source code.

A subset of the directives is:

ALTCODE[n]/NOALTCODE	Enables/disables generation of alternate code blocks. n is an integer indicating a trip count or any other expression to be used in tests for alternate code. Scope: $L/R/F$. Similar to $-em$.		
ASSOC/NOASSOC	Enables/disables associative transformations. Scope: $L/R/F$. Similar to $-ea$.		
${f NOAUTOEXPAND}/{f AUTOEXPAND}$ Disables/enables automatic inlining. Scope: ${f L}/{f R}/{f F}$.			
CHOP_HERE	Breaks a loop into two loops at the current point.		
DEPCHK/NODEPCHK	Enables/disables vector dependency checks. NODEPCHK asserts that no vector dependency exists. Scope: $L/R/F$. Similar to -ed.		
RELATION (int1 rel int2)	Provides additional information to fpp by asserting that a particu- lar relationship exists between an integer variable (<i>int1</i>) and another integer entity (<i>int2</i>). <i>rel</i> is a Fortran relational operator. Scope: $L/R/F$.		

SELECT	Selects the next loop in a nest as the one to optimize.
SWITCH	Permits various optimization and listing parameters to be set from within the source file. Certain TIDY parameters (see the TIDY section, following) can be set in no other way.
NOUNROLL/UNROLL[n]	Disables/enables loop unrolling. With scope \mathbf{R} or \mathbf{F} , n is maximum trip count for automatic unrolling (default 3). With scope \mathbf{L} , n is the number of times to unroll the loop, default calculated by fpp .

15.2.3.3 cft77 Options

These options are provided to cft77 in the normal manner, or to cf77 in a -Wf"..." construct.

the LIST and CODE directives. Default: file.l, from file.f.

- -I inlname Explicit inlining. Every program in file or directory inlname is inlined regardless of its calling tree level, as long as it meets certain other requirements. Distinct from automatic inlining (-o inline[n], n=1,2,3), which is applied to all programs whose calling tree level is not greater than n and which meet certain other requirements.
 -1 listfile Creates file listfile to receive listing output enabled by -e options c, g, m, s, x and by
- -o optim [,optim]... Specifies code optimizations to be performed during compilation. A complete list of optimization codes may be found in the chapter, "cf77 Compiling System."

-d offstring Disables or

-e onstring Enables various compilation options. A complete list may be found in the chapter, "cf77 Compiling System." A particularly useful option when vectorization is involved is -em. This option specifically marks all loops in the listing output and indicates certain of their characteristics which pertain to their vectorization: whether they are vector, scalar, or unwound loops, and whether they are bottom loaded, unrolled, short, vectorized with a computed maximum safe vector length, vectorized with a short safe vector length, and/or unconditionally vectorized with CDIR\$ IVDEP.

15.2.3.4 cft77 Directives

15 - 10

The following directives are a small subset of those which the programmer may place in the cft77 or cf77 input file and which are interpreted by cft77. Certain ones also influence the operation of fpp. Their prefix of CDIR\$ followed by at least one blank causes them to be comments for non-Cray compilers. Much of fpp's processing results in the insertion of these same cft77 directives; fpp's insertions, however, are prefixed CDIR@, so that they may be distinguished from user insertions.

IVDEP[SAFEVL=n]	Causes the compiler to ignore vector dependencies when the vector length is at least n , default all vector dependencies. Applies to the first DO or DO WHILE (nonstandard) loop, or array syntax assignment, following the directive and in the same program unit.
NEXTSCALAR	Suppresses vectorization of following DO or DO WHILE (nonstan- dard) loop.
RECURRENCE/NORECU	TRRENCE Toggle on and off the command line enabled vectorization of reduction loops; directives override $-o$ recurrence but not $-o$ norecurrence. A reduction loop reduces an array to a scalar value by doing a cumulative operation on all of the array's elements; this involves including the result of the previous iteration in the expression of the current iteration.

SHORTLOOP	Declares that a loop has a trip count less than 64, thereby eliminating the need for code to test for completion of that loop. Applies to the first DO or DO WHILE (nonstandard) loop following and in the same program unit as the directive. Effective only in vectorized loops.
VECTOR/NOVECTOR	Toggles on and off, command line enabled vectorization.
VFUNCTION list	Indicates that the listed external functions have vector versions.
VSEARCH/NOVSEARCH	Toggles on and off, command line enabled vectorization of search loops. A search loop is a loop which can be exited by means of an IF statement.

15.2.4 Another Capability – TIDYing

Code "tidying" or "beautifying," although entirely cosmetic, can make a remarkable improvement in the legibility and, hence, maintainability, of intricate, lengthy, unstructured programs with statement labels not in numerical order and with FORMAT and DATA statements scattered throughout.

Because of its extensive parsing and analysis capabilities, fpp is more than an adequate processor to beautify source code. The command

fpp -dacdehjlmpsuvy015 -ql -r... -ny... files.f

disables (-d) almost all (see the discussion at the end of this section) functionality of **fpp** except TIDYing, with output to standard out. The $-\mathbf{r}$ and $-\mathbf{n}$ options use their own set of switches to enable and disable, respectively, various features of code beautification. There are 21 such switches which provide the user with the ability to select exactly what is to be done. Among the more popular features, with very abbreviated descriptions and their default settings, are:

- **a** places inline comments on preceding line if available inline space becomes insufficient (on)
- c ensures space after comma in list (on)
- e, p e ensures space around =, and p, around + and (on)
- f positions FORMAT statements just before the END (off)
- **j**, **t j** ensures space around ** and //, and **t**, around * and / (off)
- k, o, q k ensures space around .AND., .OR., .EQV., .NEQV. (off); o ensures space around all logical operators (off); q is a combination of k and o which treats IF statements differently (on); only one of the three may be on
- m modifies spacing rules to permit short, otherwise two-line, statements to fit on one line (on)
- **n** ensures space around nonsubscript parentheses (off)
- **r** generates a block of comments listing externals (off)
- s applies j, p, t spacing rules to inside of parentheses (off)
- x shorthand specification of a popular style: format relabeling initialized at 900, other statement relabeling initialized at 100, both with an increment of 10, and insertion of comments summarizing externals (off)
- y beautifies only optimized blocks and echoes remainder of program (on)

These and other features can be selected and modified by the use of directives within the source files, applying to portions or to the entireties of the files. The SWITCH directive is the only way to change FORMAT and other statement label initial values and increments, indentations for different classes of statements, placement of statement labels, placement of comments, and the continuation line character. For example, the directives

Optimizing Cray Programs - Preprocessors

CFPP\$ SWITCH,FORMAT=900:10,RENUMB=100:10,LABELS=5:R,CONCHR=+ CFPP\$ SWITCH,INDDO=3,INDIF=3,INDCN=3,LSTCOL=31

renumber FORMAT and other statement labels to starting values of 900 and 100, respectively, with increments of 10; right-adjust statement labels into column 5; specify "+" to be the continuation line character; specify that DO blocks and IF blocks be indented three columns for each nesting level; specify that continuation lines be indented three columns; and specify that column 31 be the last column available for indentation, i.e., that no statement begin beyond column 31. Except for the continuation line character, these illustrative values are the TIDY defaults.

Detailed instructions for the use of the TIDY function of **fpp** can be found in the Cray publication, CF77 Compiling System, Volume 4: Parallel Processing Guide, SG-3074 5.0, pages 33 ff and 293 ff.

As stated previously, it is not quite possible to disable all but the TIDY functionality of **fpp**. One characteristic of **fpp** which cannot be disabled and which is highly visible to the user desiring ANSI Standard Fortran 77 output is the suffixion of certain Cray Fortran INTRINSIC subprogram names with an @ symbol. That this characteristic cannot be disabled is not addressed in the level 5.0 Cray documentation. This characteristic causes no difficulty at all, and, in fact, is a desired result, if the resulting code is then to be compiled by **cft77**, with or without intervening **fmp** processing. However, if the output is intended to be Fortran 77 source code with no greater degree of nonstandardness than the input, then the presence of the @ symbols is a corruption of the code.

There are several corrective strategies. One of the simplest is based on the realization that the @ symbols will almost certainly be sparse. In this case, it is practical to execute grep -n @ on even large source files to identify and examine those lines containing @ symbols. With or without the grep, appropriate editors can be used to find and remove the offending @ symbols.

For those cases where the source code is so lengthy or so riddled with @ symbols that manual correction is undesireable, the **fpp** output can be piped through the filter of Figure 15.1 to remove exactly those @ symbols inserted by **fpp**.

15.3 Multitasking

Vector processing, discussed previously, is a form of parallel processing wherein sets of operands, rather than individual ones, are processed more or less at the same time. There are no overhead costs due to interprocess communication because only one CPU is used. Macrotasking, microtasking, and autotasking are techniques whereby multiple CPUs are used to expedite programs, vectorized or not, which otherwise take "too long" to complete. All three techniques are referred to as multitasking, and may be combined as desired within a program, given that the technique(s) chosen are usable with the programming language. All three techniques are usable with Fortran, but only microtasking and autotasking with C. There is no saving in terms of CPU time; indeed, a penalty is paid in terms of increased overhead. However, the wall clock time sometimes can be reduced considerably.

15.3.1 Macrotasking

Macrotasking was the first of the three techniques to be developed. It demands more of the programmer than the others, and often generates the most overhead. It applies multiple processors to a FORTAN job at the subroutine level. Macrotasking was designed for long running jobs, often in a dedicated environment. It is less useful than microtasking for small jobs because it has higher overhead. Macrotasking involves substantial changes to the program.

The process of macrotasking a program consists of program analysis and the insertion of certain subroutine calls to initiate tasks, wait for completion of tasks, synchronize tasks, handle locks used to control execution in critical regions of code, and modify tuning parameters within the library scheduler. A task is a Fortran entry point, typically a subprogram, and is normally completed when a **RETURN** or **STOP** is executed. If an error occurs or a task aborts, then all tasks are stopped as quickly as possible.

Among the subprograms used are BARrierASsiGN, BARRELease, and BARSYNChronize; EVentASGN, EVCLEAR, EVPOST, EVREL, EVTEST, and EVWAIT; LOCKASGN, LOCKOFF, LOCKON, LOCKREL, and LOCKTEST; and TaSKLIST, TSKSTART, TSKVALUE, and TSKWAIT. Detailed information may be found in the on-line manual pages and in the Cray publication, Volume 1: UNICOS Fortran Library Reference Manual, SR-2079 6.0.

.

				****	k*			
1.	,							
g awk BEGIN	{	split("MOD@ "MAX@ "IAND@ "SHIFTR@ "CVMGZ@"	ABS@ MAX0@ OR@ CVMGM@	IABS@ MIN@ IOR@ CVMGN@	INT@ MIN0@ ISHFT@ CVMGP@	REAL@" AND@" SHIFTL@" CVMGT@"	$\langle \rangle$
			"mod@ "max@ "iand@ "shiftr@ "cvmgz@"	-	i ab s@ mi n@ i o r@ c vmg n@	int@ min0@ ishft@ cvmgp@	real@" and@" shiftl@" cvmgt@"	\ \ \ mod)
п	#	split(ABS MAX0 OR CVMGM	IABS MIN IOR CVMGN	INT MIN0 ISHFT CVMGP	REAL" AND" SHIFTL" CVMGT"	\ \ \ \
			"mod "max "iand "shiftr "cvmgz",	abs max0 or cvmgm	iabs min ior cvmgn	int min0 ishft cvmgp	real" and" shiftl" cvmgt"	\ \ \ orig
	}							
	{	ġ s	= 1; i sub(mod[i	,				
	}	р г ,	·int					

Figure 15.1. Filter for Removing Suffixed @ Symbols in fpp Output

15.3.2 Microtasking

Microtasking was developed after macrotasking to apply multiple processors to a program at the loop level. It demands much less of the programmer than does macrotasking and adds relatively little synchronization overhead.

The process of microtasking a program consists of program analysis and the insertion of certain directives which cause the compiling system to alter source code and invoke multitasking library routines as necessary. Because the directives appear to other compilers to be comments, microtasking does not reduce the degree to which a program conforms with the standard.

premult, not a part of the cf77 compiling system, is a preprocessor whose task is to convert microtasking directives into invocations of the appropriate library routines. It will no longer be available when version

6.0 of the compiling system is released. Its functionality will be, and is currently, available from fmp, the Fortran multitasking translator. fmp is used also with autotasked code.

Autotasking is essentially enhanced microtasking performed automatically by the compiling system, with the opportunity for application of the programmer's insights. These insights are applied by inserting microtasking/autotasking directives into the source code. Microtasking and its directives are discussed further in the autotasking section.

Microtasked programs are compatible with autotasking. Detailed information may be found in the CF77 Compiling System, Volume 4: Parallel Processing Guide, SG-3074 5.0.

15.3.3 Autotasking - fmp

Autotasking is the process, performed by the compiling system, of converting "normal," single processor Fortran source code, vectorized or not, into a form which will dynamically invoke multiple processors, based on the extent to which the program can make efficient use of them, and on the extent to which they are available.

The fpp preprocessor, discussed in the "Vectorization" section and invoked by cf77 - Zv or cf77 - Zp, not only analyzes source code and inserts directives which ultimately cause the cft77 compiler to produce vectorized object code (and which influence its operation in other ways), but also analyzes source code and inserts directives which ultimately cause autotasked object code to be produced. (fpp always prefers vectorizing to autotasking.) With the -Zv option, the autotasking/microtasking directives are entirely ignored, the cft77 compiler being able to interpret only the CDIR\$/CDIR@ directives.

When the compiling system is invoked with the -Zp option, the fmp preprocessor is invoked after fpp and before cft77. It is fmp which interprets all the autotasking/microtasking directives. The relationships among the preprocessors and directive types are as follows. All directives begin with a flag in column 1, which identifies them as directives or, when appropriate, as Fortran comments. Each flag has either a trailing \$ or @ and is followed by at least one blank. \$ indicates programmer insertion, while @ indicates insertion by fpp or fmp.

- CFPP\$ Directives inserted by the programmer to influence the operation of fpp.
- **CMIC**\$/@ Directives inserted by the programmer/fpp and interpreted by fmp to produce autotasked/microtasked object code. Some CMIC\$ directives inhibit fpp's vectorization of certain portions of source code.
- CDIR\$/@ Directives inserted by the programmer/fpp and interpreted by cft77 to produce vectorized code, or to have other effects. Certain CDIR\$ directives influence fpp's operations.

15.3.4 User Interaction with Autotasking

User interaction with autotasking follows a sequence similar to that for vectorization, but has the potential to be considerably more complex. The preprocessors and compiler can produce output listings and intermediate source files (preprocessors only) which the programmer may examine and alter. Not only is there a complete suite of directives, but also fmp has a suite of options with which it may be invoked, either directly or by use of a -Wu"..." construct. Before embarking upon the effort of detailed interaction with the autotasking process, the programmer should consider whether the potential return is worth the cost. Detailed information, together with specific programming examples, may be found in the CF77 Compiling System, Volume 4: Parallel Processing Guide, SG-3074 5.0.

•

15.3.5 Some Useful Utilities

The multitasking package maintains a history trace buffer containing the recent history of a multitasked program. This buffer is used by the following utilities.

mtdump	Examines an unformatted dump of the multitasking history buffer. Generates reports according to its options.
multimeter	Displays graphically the start/stop synchronization events in a multitasked program. Requires the X Window System.
stategraph	Displays graphically the state transitions among tasks and processes in a multitasked program. Requires the X Window System.
timeline	Displays graphically along a time line the connections and events among tasks and processes in a multitasked program. Requires the X Window System.

Intentionally Left Blank

15 - 16

16. Applications Software

16.1 The IMSL Library, Edition 10.0

The IMSL Library, Edition 10.0, has been installed on both Crays and is located in /usr/local/lib/libimsl.a. (See the chapter, "cf77 Compiling System," for information about setting up library linkages.) The IMSL Library is organized into three main areas: general applied mathematics, statistics, and special functions. Most of the subprograms are available in both single and double precision versions. Contact crayca@arl.army.mil or (410) 278-6819/DSN 298-6819 for documentation.

The MATH/LIBRARY consists of hundreds of subprograms whose documentation is grouped into the following 10 chapters:

- 1. Linear Systems
- 2. Eigensystem Analysis
- 3. Interpolation and Approximation
- 4. Integration and Differentiation
- 5. Differential Equations
- 6. Transforms
- 7. Nonlinear Equations
- 8. Optimization
- 9. Basic Matrix/Vector Operations
- 10. Utilities

The STAT/LIBRARY consists of hundreds of subprograms whose documentation is grouped into the following 20 chapters:

- 1. Basic Statistics
- 2. Regression
- 3. Correlation
- 4. Analysis of Variance
- 5. Categorical and Discrete Data Analysis
- 6. Nonparametric Statistics
- 7. Tests of Goodness of Fit and Randomness
- 8. Time Series Analysis and Forecasting
- 9. Covariance Structures and Factor Analysis
- 10. Discriminant Analysis
- 11. Cluster Analysis
- 12. Sampling
- 13. Survival Analysis, Life Testing, and Reliability
- 14. Multidimensional Scaling
- 15. Density and Hazard Estimation
- 16. Line Printer Graphics
- 17. Probability Distribution Functions and Inverses
- 18. Random Number Generation
- 19. Utilities
- 20. Mathematical Support

Introductory User Guide – May 1993

Applications Software

The SFUN/LIBRARY consists of almost 200 subprograms whose documentation is grouped into the following 12 chapters:

- 1. Elementary Functions
- 2. Trigonometric and Hyperbolic Functions
- 3. Exponential Integrals and Related Functions
- 4. Gamma Function and Related Functions
- 5. Error Function and Related Functions
- 6. Bessel Functions
- 7. Kelvin Functions
- 8. Bessel Functions of Fractional Order
- 9. Elliptic Integrals
- 10. Weierstrass Elliptic and Related Functions
- 11. Probability Distribution Functions and Inverses
- 12. Miscellaneous Functions

16.2 The IMSL Library, Edition 9.2

The previous edition of the IMSL library, Edition 9.2, is no longer available on either Cray. There are substantial changes in subroutine names and arguments between editions 9.2 and 10.0. The file /usr/pub/imsl.10 contains a list of edition 9.2 names and directs the user to the edition 10.0 subroutines by which they are replaced. It also contains information on the compatibility of the edition 9.2 and edition 10.0 subroutines.

16.3 LINDO – Linear, INteractive, Discrete Optimizer

Linear programming is a mathematical procedure for determining optimal allocation of scarce resources. LINDO is an interactive program used to formulate and solve linear programming problems. The Cray X-MP command line is /usr/local/bin/lindo.

16.4 PVI Graphics

Precision Visuals, Inc. (PVI) of Boulder, CO, provides a number of Fortran callable 2-D and 3-D graphics utilities including:

- DI-3000
- Grafmaker
- Contouring
- DI-Textpro
- GK-2000

Each of these graphics utilities interfaces with a common device driver library consisting of 50 different device drivers which support graphics terminals, pen plotters, laser printers, and color recording devices. The PVI graphics software has been installed on both the Cray-2 and the Cray X-MP. A complete list of the supported devices can be found in /usr/pvi/bin/DRIVER-LIST.

PVI also provides two interactive graphics utilities:

- PicSure/Plus
- Metafile/CGM Translator

These two packages interface with the same device driver library as the Fortran callable packages. The PicSure library is an interactive package invoked from the shell. The metafile library is available both to Fortran programs and by use of the interactive Metafile Translator. A metafile is a sequential file which contains a series of graphics images.

Documentation for the PVI products includes:

- DI-3000 User's Guide and Quick Reference Guide
- Grafmaker/Grafeasy User's Guide and Quick Reference Guide
- Contouring System User's Guide
- GK-2000 User's Guide and Quick Reference Guide
- Metafile Translator User's Guide
- PicSure User's Guide and Quick Reference Guide
- PicSure Chart Book

16.4.1 Fortran Callable Subroutines

16.4.1.1 DI-3000

This is a very flexible, low level graphics library which supports full device color, 2-D and 3-D primitives, shaded pattern areas, full graphics input, real time image manipulation, and object modeling. This library can be used to develop customized graphics applications in which the programmer needs precise control over the characteristics of the final graphical output. DI-3000 consists of over 200 user-callable subroutines. An executable created with the DI-3000 library is output device independent; that is, changing an environment variable is sufficient to cause the output to be sent to a different device and to utilize fully that device's capabilities. See the following section, "PVI Utilization," for more information.

16.4.1.2 Grafmaker and Grafeasy

This library contains high level Fortran callable graphics subroutines which, in turn, invoke DI-3000 subroutines. It can be used for building routine applications such as might produce line graphs and bar and pie charts.

Although not as flexible as DI-3000, this library permits programs producing routine data presentation output to be developed quickly. If more precise control over certain chart attributes is needed, the lower level DI-3000 subroutines can be invoked explicitly along with the Grafmaker subroutines.

Grafeasy is a related product. It creates rudimentary data presentation charts and provides minimal programming options. This product can be very useful for black and white terminal display images.

16.4.1.3 DI-Textpro

This option to DI-3000 invokes a library of high precision, presentation quality fonts. Some of the fonts available follow, in outline form. Variations, including italics, are available.

```
SwissAldine Classic ItalicSwiss LightAldine Classic Extra ItalicSwiss BoldCentury BoldHumanist BoldCentury BoldAldineOCRStencilGeometrie
```

16.4.1.4 Contouring

Contouring library subroutines may be invoked from within DI-3000 based programs. This Fortran library is used to create mesh or contour map surfaces from gridded or random data. The contouring system provides monochrome and color contours, color-filled maps, 3-D contour lines, 3-D mesh surfaces, hidden line removal, 3-D axes, and marker/annotation control. Because the contouring library invokes DI-3000 subroutines, the programmer has complete control over chart features and device independent graphic output.

16.4.1.5 GK-2000

This library, consisting of over 200 user-callable Fortran subroutines, is completely separate from DI-3000. The GK-2000 package is certified for compliance with the Graphical Kernel System (GKS) level 2b specifications. GKS is a world-wide, machine and device independent graphics standard for 2-D graphics. GKS compliance means that the set of subroutine invocations used to produce graphics output is standardized. The standard specifies subroutine names, arguments, and actions. Therefore, this software is particularly valuable for writing portable code.

16.4.2 PVI Utilization

16.4.2.1 Environment Variables

A number of environment variables must be set before using the PVI software:

For /bin/sh users, in the .profile file, or elsewhere:

```
PVL_ROOT=/usr/pvi

PVL_LINK=dynamic

PVL_DEV_1=xxx

[PVL_DEV_n=xxx]

[...]

PVL_LDFLAGS=filename

PATH=$PATH:$PVL_ROOT/bin

export PVL_ROOT PVL_LINK PVL_DEV_1 [...] PATH
```

For /bin/csh and /bin/tcsh users, in the .login file, or elsewhere:

```
setenv PVL_ROOT /usr/pvi
setenv PVL_LINK dynamic
setenv PVL_DEV_1 xxx
[setenv PVL_DEV_n xxx]
[...]
setenv PVL_LDFLAGS filename
set path=($path $PVL_ROOT/bin)
```

PVL_DEV_*n* specifies a location where temporary loader information can be written. A conventional practice is to use /tmp/username for *filename*. *xxx* is a 3-character code for the device driver to be used as the output device. PVI programs may use up to eight different output devices concurrently. The devices are assigned by environment variables **PVL_DEV_***n*, *n* from 1 through 8, inclusive. **PVL_DEV_1** is required and is the primary output device; the others are optional.

16.4.2.2 Compiling and Loading PVI Programs

The following commands will compile and load PVI programs. Both scripts invoke the cft77 compiler, followed by the segldr. To create an executable using DI-3000, Grafmaker, DI-Textpro, and contouring, use:

di3load [-SS] [-HP] [-HLR] [-MF] [-GM] [-TP] [-CN] [segldr_options] filenames.f

where the options specify

-SS	segment storage library
-HP	high precision library
-HLR	hidden line removal
-MF	metafile library

- -GM Grafmaker/Grafeasy library
- -TP DI-Textpro library
- -CN contouring library

To create an executable using GK-2000, use:

```
gk2load [-MF] [-SS] [segldr_options] filenames.f
```

where the options specify

-MF metafile library

-SS segment storage library

16.4.3 Interactive Graphics Applications

16.4.3.1 PicSure/Plus

PicSure is an interactive computer graphics software system for generating 2-D charts and graphs with simple sequences of English-like commands. Little knowledge of programming is required. This package can be used to present data in many different forms. The basic PicSure chart types are line graphs and bar, pie, and text charts. Variations of the basic chart types, such as stacked line graphs, horizontal bar charts, stacked bar charts, and scattergrams are available. Multiple smaller charts can be combined into a single composite chart.

Usually, PicSure is run as an interactive program, but it can accept commands from an external file, as if they were being entered in sequence from the keyboard. The user enters a sequence of commands to build a chart, which then is drawn on one or more (up to eight) graphics display devices, or is stored in a metafile. Any device supported in the common device library can be used with PicSure. See the following sections on Metafile/CGM for more details. The *PicSure User's Guide* provides an excellent introduction and tutorial on the use of PicSure and is strongly recommended for first time users.

16.4.3.2 Using PicSure

A number of environment variables must be set before using PicSure.

For /bin/sh users, in the .profile file, or elsewhere:

PVLROOT=/usr/pvi PATH=\$PATH:\$PVLROOT/bin export PVLROOT PATH

For /bin/csh and /bin/tcsh users, in the .login file, or elsewhere:

setenv PVL_ROOT /usr/pvi
set path=(\$path \$PVL_ROOT/bin)

To invoke PicSure, execute

picsure [drv1 [... drv8]]

where each of the *drvn* is a 3-character code for the device driver to be used as an output device, as discussed previously in this chapter. If no arguments are specified, a prompt will be issued for at least one.

16.4.3.3 Metafile/CGM Translator

The Metafile System provides a method for storing graphical information from an application as an external file which is both device and machine independent. The external file, called a metafile, is a sequential file of images created by graphics software. DI-3000, GK-2000, and PicSure can produce metafiles. The images in a metafile are created for a virtual graphics device and become associated with a physical device only at the time of actual rendering of the graphics output into an image.

A Computer Generated Metafile (CGM) is a different kind of metafile. It conforms to the first international standard for metafile images and is not only machine and device independent, but also is independent of the application which produced the image.

16.4.3.4 Using Metafile/CGM Translator

To use the metafile system, the user must first establish the appropriate environment variables, as discussed previously for other PVI software. There are two different procedures available for viewing metafiles. The first,

is used to view PVI format metafiles, to produce additional PVI format metafiles, or to translate such files to the CGM format. The other,

cgmint [drv1...]

is used to convert CGM metafiles to a particular graphics output device format or to the PVI metafile format. *options* have to do with conformance to the CGM standard and drv1 ... is a list of up to eight device driver codes, as discussed previously.

16.5 CA-DISSPLA 11.0 Graphics Library

DISSPLA (Display Integrated Software System and Plotting LAnguage) is a high level Fortran graphics subroutine library. The library on the Cray X-MP includes over 400 Fortran subroutines and functions which can produce general purpose 2-D and 3-D graphics, and three option packages which can produce, for example, maps with correct political boundaries, calendar axes, and applications conforming to the international standard Graphical Kernel System (GKS). CA-DISSPLA/CA-GKS supports over 300 different graphics devices. Basic instructions on the use of a particular device are provided in the directory /usr/local/disspla11/doc.

To be compatible with CA-DISSPLA or CA-GKS, the application program must be written in a language compatible with Fortran. The application is then compiled and linked with the appropriate object libraries:

/usr/local/disspla11/lib/libdcc.a /usr/local/disspla11/lib/libdis77.a /usr/local/disspla11/lib/libdisman77.a /usr/local/disspla11/lib/libgks.a /usr/local/disspla11/lib/libint.a

to produce an executable program. cf77 and segldr can be invoked explicitly with one or more -1 options, or their equivalents, or one of the compiler/linker scripts provided with the CA-DISSPLA pack-age can be used. To use the CA-DISSPLA linker, enter /usr/local/disspla11/dis77link program, where program is the base portion of the filename, program.f. To use the GKS linker, enter /usr/local/disspla11/gkslink program. Each linker produces an executable named program.

The environment variable SFDATA must be set prior to executing the program. For /bin/sh users, in the .profile file, or elsewhere:

SFDATA=/usr/local/disspla11/data/dsdf.dat export SFDATA

For /bin/csh and /bin/tcsh users, in the .login file, or elsewhere:

setenv SFDATA /usr/local/disspla11/data/dsdf.dat

16.6 CA-DISSPLA 10.0 Graphics Library

CA-DISSPLA 10.0 is the release level running on the Cray-2, probably until mid-1993, at which time level 11.0 is scheduled to become the released version for the Cray-2. Level 10.0 functionality is the same as that of level 11.0, discussed previously. Library names, locations, and linkages, however, are different, as follows:

/usr/local/lib/disspla.10/dcclib.a /usr/local/lib/disspla.10/dislib.a /usr/local/lib/disspla.10/gkslib.a /usr/local/lib/disspla.10/intlib.a /usr/local/lib/disspla.10/pvilib.a

Special linker programs are not provided in CA-DISSPLA 10.0. The libraries must be linked with a user's object files using a special **segldr** command, **segld5**, which is designed to reconcile incompatibilities between the CA-DISSPLA 10.0 libraries and the default scientific libraries used by the UNICOS 6.0 **segldr**. A user must do a separate compilation, cft77, followed by a segld5 invocation, instead of using the cf77 compiling system which automatically calls the normal segldr. segld5 has the same syntax as segldr; therefore, the CA-DISSPLA 10.0 libraries may be specified in the usual manner. It is not necessary to set an environmental variable corresponding to version 11.0's SFDATA.

Army Research Laboratory Supercomputer Facility – APG, MD

16.7 MPGS

MPGS (MultiPurpose Graphics System) is a Cray Research, Inc. product which interactively performs distributed visualization postprocessing of data files resident on a Cray supercomputer. It is discussed in the chapter, "Scientific Visualization."

16.8 BRL-CAD

BRL-CAD (Ballistic Research Laboratory CAD) is a large, interactive, public domain, combinatorial solid geometry (CSG) based modeling system written entirely in-house at the then USABRL. It is discussed in the chapter, "Scientific Visualization."

16.9 BRLLIB

BRLLIB is a collection of Fortran utility subprograms formerly available on BRLESC I and II (pronounced "burlesque," and meaning Ballistic Research Laboratory Electronic Scientific Computer; computers built in-house during a time when BRL could and did build better machines than were available in the market-place) and then on the BRL CYBER computers under the collective name, "BRLLIB." In large part, these subprograms have been in more or less continuous use by scientists and engineers of the former BRL for over 25 years. They are not provided as a library, but as a collection of separate source code files, /usr/local/brllib/subprograms/*.f on the Cray X-MP, which can be incorporated into a user's programs. The man page gives a description of the subprograms available. Each subprogram contains more complete internal documentation. In addition, more complete documentation for all of the subprograms is collected into the file /usr/local/brllib/descriptions.

16.10 MR – Stepwise Multiple Regression

The BRL Stepwise Multiple Regression Program, named MR, was written long ago at BRL for use on BRLESC I and II (pronounced "burlesque," and meaning Ballistic Research Laboratory Electronic Scientific Computer; computers built in-house during a time when BRL could and did build better machines than were available in the marketplace) in the FORAST language (an early language more or less similar to Fortran). The program was subjected to any number of rewrites/patches to cast it into various nonstandard versions of Fortran, to make it run on newer machines, and to introduce additional functionality. MR source code is available on the Cray X-MP as the collection of .f files in /usr/local/brllib/mr.

The MR version currently in use:

- supersedes all earlier versions.
- runs on many ARLSCF machines, including both Crays.
- is entirely in accord with the ANSI Fortran 77 standard, except that, for legibility, the code is entirely in lower case characters, except certain constants.
- is more modular and structured than its predecessors.
- takes advantage of the UNIX-based computing environment to make input and output much more convenient than its predecessors.

- does not have its predecessors' "rescale" capability, which capability is better implemented by the user as a part of the physical phenomenon description in the **form** subroutines.
- uses PVI GRAFMAKER software and the GRAFMAKER UNIX interface to produce plots equivalent to those of its predecessors.

The MR program is extremely general in that it can be applied to any physical phenomenon; there is, however, a cost associated with this generality. The MR source code proper contains all the mathematics required for the regression analysis, but the modeling specific to the details of the physical phenomenon of interest is absent. The user must encode in ANSI Standard Fortran 77 subroutines (and, if desired, in other subprograms invoked by them) the details of the physical relationships thought to exist within the data being regressed.

MR source code is available on the Cray X-MP as the collection of .f files in /usr/local/brllib/mr. Of those .f files, the ones with base names blockdata, dropg, form1, form2, form3, form4, form5, form6, form7, form8, form10, liofst, and prepar are not a part of MR proper, but rather address certain exterior ballistics analyses, and are provided merely as examples. File form9.f is a skeleton displaying the minimum requirements of the form subroutine interface. An executable is not provided because certain environmental variables required by the GRAFMAKER - UNIX interface must be available at load time (the variables' values change from one user to another), and, of course, because different uses require the incorporation of different form subroutines. Hence, before his first execution of MR, each user must define his own set of environmental variables and create his own PVI output device configuration file (if the graphics output capabilities are to be used). Before the first MR analysis of a given phenomenon, a user must encode the form subroutines modeling that phenomenon, compile the collection of .f files proper to MR along with the ones specific to the phenomenon of interest, and load the resulting .o files and appropriate libraries to obtain an executable. The load sequence required for PVI software is intricate and has been encapsulated in the script di3load.

16.11 SIMSCRIPT II.5

SIMSCRIPT II.5, a language designed specifically for simulation, is available on the Cray-2.

The SIMSCRIPT II.5 compiler, /usr/local/bin/simc, translates a program written in the SIMSCRIPT II.5 programming language into C, invokes cc to produce one or more .o files, and, by default, invokes segldr to produce the executable, a.out. The SIMSCRIPT II.5 loader, /usr/local/bin/simld, invokes segldr to load the specified .o files and appropriate objects from libraries to produce the executable, a.out. By convention, files containing SIMSCRIPT II.5 source code are given names that end in .sim.

To compile a SIMSCRIPT II.5 program, enter:

simc [options] files.sim

where the options are:

- -c Suppresses loading and produces a .o file with the same base name as the SIMSCRIPT source file.
- -C Generates additional code to perform run time checking of every array element reference and every attribute reference; this is recommended until the program is fully debugged.
- -f Produces FLOWTRACE profiling information during execution.
- -g Generates tables associated with each routine to provide a more elaborate traceback of the program state in the event of a run time error or TRACE.
- -1 Writes a listing to standard output which includes the source statements and any diagnostic messages and, if -x or -X have been specified, the local and/or global cross references.
- -o executable When an executable is produced, name it executable instead of a.out.

- -S Produces file(s) containing the generated source code for the routine together with the SIM-SCRIPT source code as comments.
- -v Inhibits the listing of the preamble and the generation of any "scripted" routines used to perform such things as set management and entity creation and deletion.
- -w Suppresses warning messages.
- $-\mathbf{x}$ Writes to the listing the local cross references for each routine.
- $-\mathbf{X}$ Writes to the listing the global cross references for each routine.

To produce an executable from existing SIMSCRIPT II.5 object (.0) files, enter simild [-o name] files.o, where -o name specifies a name other than **a.out** for the executable.

SIMSCRIPT II.5 executables are executed in the usual manner. Parameters specified on the command line are available to the program in the SIMSCRIPT II.5 global TEXT array, PARM.V. For example, given the command:

a.out -j 5 xyz.data

the PARM.V array is initialized as follows (SIMSCRIPT II.5 source code):

DIM.F(PARM.V(*))=3 PARM.V(1)="-j" PARM.V(2)="5" PARM.V(3)="xyz.data"

A SIMSCRIPT II.5 program uses unit 5 for standard input, unit 6 for standard output, and unit 98 for standard error. I/O involving these units may be redirected in the usual way.

16.12 LQGALPHA

LQGALPHA is a library of Fortran programs for the development and analysis of linear multivariable control system designs (both continuous and discrete time) based on the Linear-Quadratic-Gaussian (LQG) design and singular value analysis methodologies. LQGALPHA can be used to

- design linear feedback systems
- analyze linear systems using classical tools such as Bode plots, Nyquist plots, Inverse Nyquist plots, and Nichols charts
- analyze linear systems using modern singular value analysis
- simulate deterministic and stochastic linear systems

LQGALPHA is available on the Cray X-MP. Additional information and documentation may be obtained from the licensor,

ALPHATECH, Inc. 2 Burlington Executive Center 111 Middlesex Turnpike Burlington, Massachusetts 01803 1-617-273-3388

16.13 PROLOG

Prolog (PROgrammation en LOGique) is a nonprocedural programming language based on the first order predicate calculus. J. W. Lloyd's *Foundations of Logic Programming* (Springer-Verlag 1985) provides a description of the mathematical underpinnings of Prolog and other logic programming systems. The language was designed by Alain Colmerauer of the University of Marseilles and originally implemented there by Philippe Roussel in 1972. Prolog saw little use outside of European universities until 1980, when it was chosen as the implementation language for the Japanese Fifth Generation computer project. Since then, it has grown in popularity as a language for prototyping, problem specification, expert systems development, and research in artificial intelligence.

Cray Prolog, available only on the Cray X-MP, was designed and developed at Cray Research by Peter Klausler. It uses several novel techniques, including partial clause compilation and vectorized structure copying to provide efficient execution of logic programs on Cray Research supercomputers.

Prolog is described in the book *Programming in Prolog* by W. Clocksin and C. Mellish. Cray Prolog differs from Clocksin and Mellish at least in that, in Cray Prolog:

- It is not possible to find more than one outcome in a search. This is a fatal problem.
- Periods terminate clauses if and only if they are followed by white space characters, are not preceded by another period, and are not nested within braces, brackets, or parentheses, with the following exception.
- Integers at the end of a query are not parsed correctly in that ". " after an integer is parsed as a decimal point.
- Cray prolog thinks [] is not atomic; i.e., **atomic([])**. fails when it should succeed.
- Atoms defined to be prefix operators may not be used as functors.
- At end of file, **read**= will forever return the term ?-end.
- The predefined predicate clause is defined as clause (X), where X unifies with a clause in the database.
- The predefined predicate debugging is defined as debugging (X), where X matches a list of active spy point specifications.
- compile, once, dump, and system are predefined predicates.
- write, display, and listing print unbound variables with their original names.
- The NOLC and LC predefined predicates are not supported.
- The operators "not" and "," have slightly different signatures; "not" is "fy, not (fx)", and "," is "xfy, not (yfx)".

16.14 SCIPORT

The SCIPORT library, available on the Cray X-MP as /usr/local/sciport, is a portable implementation of the Cray SCILIB Mathematical Library. It was developed by General Electric Corporate Research and Development to enhance convertibility between local computer systems, where applications are developed, and the Cray environment, which is suited to production use. The SCIPORT library is a collection of portable utility subroutines encoded in Fortran. SCIPORT reproduces the functions of corresponding routines in Cray Research's SCILIB. Thus, the user developing applications locally can use SCILIB calls during program development with the assurance that results will be consistent (within floating point precision) between the local computer and the Cray.

In addition, these portable, compact, and efficient SCIPORT routines provide a convenient source for commonly used mathematical software, such as the BLAS (Basic Linear Algebra Subroutines), which occur frequently in higher level libraries like LINPACK, EISPACK, and others.

16.15 ABAQUS

ABAQUS, available on the Cray X-MP, is a general-purpose finite element analysis program for use in the numerical modeling of structural response. Stress problems can be divided into two types, static and dynamic response, depending upon whether inertial effects are significant. ABAQUS permits the same analysis to be used for both the static and dynamic phases. Procedures are available within ABAQUS for the following:

- static stress analysis
- dynamic analysis
- heat transfer
- element removal/replacement
- coupled pore fluid diffusion and stress
- eigenvalue buckling prediction
- coupled heat transfer/stress analysis
- natural frequency extraction
- J-integral evaluation
- geostatic stress state
- dynamic analysis of linear systems by modal methods
- substructuring/superelements
- loading specification
- rezoning
- acoustic and coupled acoustic-structural analysis

The scripts

16 - 12

/usr/local/abaqus/bin/abaqus /usr/local/abaqus/bin/abaplot /usr/local/abaqus/bin/abapost

constitute the user interface with ABAQUS. Documentation can be obtained from

Hibbitt, Karlsson & Sorensen, Inc. 1080 Main Street Pawtucket, RI 02860 1-401-727-4200

16.16 MSC/NASTRAN

This software is not accessible to users pending availability of funds to meet licensing costs. User organizations willing to provide partial funding should contact the Chief, High Performance Computing & Communications Branch, listed in Appendix B.

MSC/NASTRAN is a large-scale, general-purpose digital computer program which can be used to solve a wide variety of engineering problems by the finite element method. It has been developed and is main-tained by the MacNeal-Schwendler Corporation (MSC) from the original NASTRAN general-purpose structural analysis program of the National Aeronautics and Space Administration (NASA). Executables and example data and result sets are in directory /usr/src/src3d/Nastran on the Cray X-MP.

MSC/NASTRAN is invoked by

/usr/local/bin/nastran [jid=]input-file-base-name [options]

Options are discussed in the man pages and in MSC documentation.

The ARLSCF has only reference copies of the MSC documentation. Organizational/personal copies of the documentation may be purchased directly from MSC. Call the Product Service Center at 1-800-336-4858 for current Government pricing. Purchase orders should be sent to:

MacNeal-Schwendler Corporation Product Service Center 815 Colorado Blvd. Los Angeles, CA 90041-1777

16.17 MSC/DYNA

This software is not accessible to users pending availability of funds to meet licensing costs. User organizations willing to provide partial funding should contact the Chief, High Performance Computing & Communications Branch, listed in Appendix B.

MSC/DYNA is a 3-D finite element code for analyzing the dynamic, nonlinear behavior of solid components and structures. It uses explicit time integration and incorporates features to simulate a wide range of material and geometric nonlinearity. It is particularly suitable for analyzing transient events that incorporate a high degree of nonlinearity. Executables and example data and result sets are in directory /usr/src/src3d/Dyna3 on the Cray X-MP.

MSC/DYNA is invoked by

/usr/local/bin/dyna [jid=]input-file-base-name [options]

Options are discussed in the man pages and in MSC documentation.

The ARLSCF has only reference copies of the MSC documentation. Organizational/personal copies of the documentation may be purchased directly from MSC. Call the Product Service Center at 1-800-336-4858 for current Government pricing. Purchase orders should be sent to:

MacNeal-Schwendler Corporation Product Service Center 815 Colorado Blvd. Los Angeles, CA 90041-1777

16.18 MSC/PISCES

This software is not accessible to users pending availability of funds to meet licensing costs. User organizations willing to provide partial funding should contact the Chief, High Performance Computing & Communications Branch, listed in Appendix B.

MSC/PISCES 2-DELK is a 2-D explicit finite difference computer program used to study the response and interaction of fluids and solids to static or dynamic loads.

Shell scripts, executables, and example data and result sets are in directory /usr/src/src3d/Pisces.v30 on the Cray X-MP.

The ARLSCF has only reference copies of the MSC documentation. Organizational/personal copies of the documentation may be purchased directly from MSC. Call the Product Service Center at 1-800-336-4858 for current Government pricing. Purchase orders should be sent to:

MacNeal-Schwendler Corporation Product Service Center 815 Colorado Blvd. Los Angeles, CA 90041-1777

16.19 MSC/DYTRAN

This software is not accessible to users pending availability of funds to meet licensing costs. User organizations willing to provide partial funding should contact the Chief, High Performance Computing & Communications Branch, listed in Appendix B.

MSC/DYTRAN version 2 is a 3-D finite element code particularly suitable for analyzing transient events involving large deformations, a high degree of nonlinearity, and interactions between fluids and structures. Lagrangian and Eulerian processors are available.

Shell scripts, executables, and example data and result sets are in directory /usr/src/src3d/Dytran on the Cray X-MP.

The ARLSCF has only reference copies of the MSC documentation. Organizational/personal copies of the documentation may be purchased directly from MSC. Call the Product Service Center at 1-800-336-4858 for current Government pricing. Purchase orders should be sent to:

MacNeal-Schwendler Corporation Product Service Center 815 Colorado Blvd. Los Angeles, CA 90041-1777

17. Scientific Visualization

17.1 Introduction

Scientific visualization is the rendering of scientific data as images. Its end product is often a video animation, but it encompasses still image production and interactive data exploration. The data are often the result of computations performed within a grid system, but data from other types of computation and experimental data also can benefit from visualization techniques.

Scientific visualization has two major purposes: to assist scientists and engineers in their work, and to explain and promote the science or engineering discipline to others. The requirements for the graphics used in these two situations often differ. In the former, the graphics must facilitate detailed examination of the data, while in the latter, the graphics must be attractive and easily understood by the uninitiate.

Scientific visualization provides a capability to present traditional data in nontraditional and innovative ways. For example, computer solutions of difficult or intricate problems often produce immense quantities of numerical data, quantities so large as to defy attempts at synthesis to obtain understanding of the phenomena. For years, such large data sets routinely have been rendered as X-Y plots or contour plots on monochrome terminals and pen plotters. Today, software and hardware exist to present the same information as 3-D, light source shaded, colored surfaces, conveying more information in a much more readily apprehended manner. In addition, certain variables (e.g., time, speed, fraction of a particular constituent in an alloy or chemical mixture) may be parameterized to produce sets of individual solutions. The individual solutions can be visualized and then displayed sequentially to achieve animation, where the "action" highlights dependence upon some variable of particular interest. Visualizations, static or dynamic, can be viewed from different directions and zoomed to provide an overall appreciation of the data set in its entirety or very close examination of its smallest details.

These capabilities for overall synthesis and almost simultaneous differentiation of detail are provided by no technique other than visualization, and they can improve dramatically an investigator's insight into a problem.

17.2 Resources

Several organizations have combined their resources, facilities, and equipment to create the unclassified visualization laboratory located in Building 390, Room 133. This facility, although of limited capacity, is available to interested parties for visualization and animation production work. A Silicon Graphics (SGI) 440VGX with approximately 10 GB of disk storage is the central computing server, and there is an SGI 420VGX with approximately 20 GB of high-speed disk storage for special applications. In addition, facility personnel are available to assist organizations with large requirements in developing their own visualization capability.

A similar cooperative effort has resulted in the classified animation facility in the building 309 computer site. An SGI 320VGX system and miscellaneous video equipment have been procured and soon will be available for general use.

The Scientific Visualization Team periodically sponsors seminars and open houses to announce and demonstrate new resources, to educate users, and to demonstrate visualization techniques. For additional information and assistance, contact the team via electronic mail at vis@arl.army.mil.

17.3 Hardware

Currently, the hardware inventory for the two visualization facilities is:

- SGI 4D/440VGX (64 MB memory; 8, 1.2 GB SCSI drives; multibuffer)
- SGI 4D/420VGX (64 MB memory; 8, 3 GB IPI drives; multibuffer)
- SGI 4D/320VGX (64 MB memory; 1, 1.1 GB IPI drive)
- Abekas A60 networked digital video disk
- Abekas "Solo" A34 Video Mixer and Production System
- Chromatek 9120 scan converter
- Faroudja RGB to NTSC encoder
- Tektronix TSG-170A synchronization generator
- Tektronix 1870R measurement set
- Panasonic TQ-3031F video disk player/recorder
- Panasonic TQ-3032F video disk player
- Sony BVU-870 U-matic (3/4 inch) SP VCR
- Sony VO-9600 U-matic (3/4 inch) SP VCR
- Lyon-Lamb MiniVas VTR controller
- Spatial Systems Spaceball

17.4 Software

Because of its complexity, the visualization software cannot be described in detail in this document. More complete descriptions and usage information than are presented herein can be obtained from the Scientific Visualization Team (email: vis@arl.army.mil). In general, the software packages are not run on the ARLSCF Crays (MPGS, whose description follows, is an exception); instead, they are used to postprocess large amounts of data often associated with applications running on the Crays. The software inventory is expanding as the Scientific Visualization Team investigates new software packages which have the potential to meet the needs of the scientific computing community. The scientific visualization packages of primary interest are:

- MPGS (MultiPurpose Graphics System)
- BRL-CAD
- Advanced Visualizer
- Data Visualizer
- PV-Wave
- BRL-ShAYD

17.4.1 MPGS – MultiPurpose Graphics System

MPGS is a Cray Research, Inc. product which interactively performs distributed visualization postprocessing of data files resident on a Cray supercomputer. It is distributed between a Cray running UNICOS and UNIX-based workstations, either Silicon Graphics workstations in the IRIS-4D series, including Indigo, or IBM RS6000 workstations with graphics upgrades. Communication between the workstation and the supercomputer is effected via the TCP/IP network protocol. Two versions of MPGS are available on each ARLSCF Cray, /usr/local/bin/mpgs3.5 and /usr/local/bin/mpgs4.1, to accommodate the operating system level of the workstation involved. There is no charge for installing the workstation portion of MPGS.

The Cray system handles memory-intensive and CPU-intensive tasks, and the workstation, local graphics manipulations such as rotation, zoom, hidden line removal, and key-frame animation. This workload distribution and the continued residence of the dataset on the Cray ensure the efficient use of both computer systems and minimize network data transfers.

MPGS is useful for the visualization of data in almost any scientific or engineering area, e.g., structural analysis, computational fluid dynamics, electromagnetics, and thermodynamics. Its key features are:

- interactive, menu driven
- has a flexible parts structure
- supports dynamic transformations
- supports line drawings and hidden line drawings
- supports false color and shading
- can display all nodes in a computational mesh
- produces contours (isolines) of equal scalar magnitude
- processes scalar, vector, and discrete particle data
- supports arbitrary 2-D clipping planes

MPGS input files must be in the MPGS file format, or in the Movie-BYU format. Converters are available for several popular data file formats such as Dyna3D, Nastran, Patran, and Plot3D. Generally, these interactive data converters prompt the user for information about the input file and create the appropriate MPGS output file.

17.4.2 BRL-CAD

BRL-CAD is a large, combinatorial solid geometry (CSG) based modeling system written entirely in-house at the then USABRL. It is in the public domain and is installed on the two ARLSCF Crays and various other ARLSCF machines. Its main components are a solid model editor (MGED), a ray tracing library for model interrogation (librt.a), a generic frame buffer library with full network display capability (libfb.a), and a large collection of software tools for frame buffer and image manipulation and analysis. These utilities, augmented by in-house format converters, color mappers, etc., have been a significant component of visualization work to date.

Documentation for BRL-CAD is available from the ARLSCF staff, in the **man** pages, and in the USABRL document entitled *The Ballistic Research Laboratory CAD Package*.

17.4.3 Wavefront: Advanced Visualizer

This software is licensed for individual Silicon Graphics workstations and is available on several SGIs in the visualization facility. It is used routinely for geometric modeling applications such as sabot and penetrator design, and it provides tools required to generate 3-D geometry and features such as surface materials and textures. Data converters are available to read both IDEAS and Movie-BYU formatted geometry files into the Advanced Visualizer. The Advanced Visualizer consists of four modules:

- Model This module builds or imports objects. It provides the tools required to generate 3-D geometry and to apply materials and textures to the generated surfaces.
- Preview The animation module. It is used to produce complicated motion from multiple objects, cameras, and lights.
- Medit This module is used to create and edit materials, textures, colors, atmospheres, lights, and reflections. This information is passed to Model which creates a library of surfaces with these characteristics.
- Image This module outputs a finished image to a file or output device. Multiple individual files each contain a single time step of an animation; when viewed sequentially, they provide the animation of the described object.

17.4.4 Wavefront: Data Visualizer

Wavefront's Data Visualizer is a 3-D volumetric visualization package. It is useful for animating recorded or numerically simulated data. It consists of numerous tools which permit the visualization of scalar and vector fields and any associated meshes. The graphics and user interfaces are separate from the data server, so remote data (e.g., resident on the Cray X-MP) can be viewed on a local SGI workstation.

Third-party data converters are available to convert files into a format compatible with the Data Visualizer. General purpose formats which can be so converted include Plot3D, HDF, AVS, and Movie-BYU. HULL, AVCO, USA-PG3 and Dyna3D converters have been written locally.

17.4.5 Precision Visuals: PV-Wave

PV-Wave is workstation-based software which permits interactive exploration and visualization of large datasets. This software is particularly useful for interactive data reduction and filtering, 2-D plotting (e.g., time series graphs, polar plots, and log/linear charts), 3-D data display (e.g., contouring, hidden line mesh surfaces, and light source shading), and image analysis and manipulation. PV-Wave is designed specifically for X-windows output and can be run from **image.arl.army.mil** (VAX 6320), with graphics output being sent to any X-window device.

This software can be licensed to run on SGI, Sun, DEC, HP, and IBM workstations, and is available in a command language interface version and in a window-based point-and-click interface version.

17.4.6 BRL-ShAYD

BRL-ShAYD (Shaded polygons At Your Desk) is a locally developed package for software rendering of data in the Plot3D format, with the output displayed either on an X-window device or a BRL-CAD frame buffer. ShAYD consists of four parts:

- A grid and solution server which reads data files from the platform where the computation was performed.
- A viewing pipeline which renders the grids and solutions as 3-D Gourand shaded polygons.
- A simple command driven user interface which controls the viewing pipeline and data server.
- A MOTIF-based graphical user interface (GUI) which provides a point-and-click X-window interface to the command language.

BRL-ShAYD is particularly useful for viewing very large datasets which may be too large for some of the workstation-based packages. ShAYD permits examination of these datasets by taking "slices" of the data

and displaying only those slices rather than trying to render the entire dataset.

The polygon rendering performed by ShAYD is accomplished in software rather than by relying on specific workstation hardware. Therefore, users with access to relatively inexpensive X-window-based terminals and workstations which do not provide graphics capabilities in hardware can use this software package.

17.4.7 New Software

Several new packages whose utility and reliability have not yet been fully defined are available.

SciAn, a public domain scientific visualization and animation program for graphics workstations, is very promising. It is being developed at Florida State University and the Supercomputer Research Institute, partially funded by a Department of Energy grant. A beta test version is available on Silicon Graphics workstations. Currently, SciAn reads only HDF (Hierarchical Data Format) files, but plans for the future include a distributed file reader with a Plot3D translator.

A software package called n-Title is available to generate animated text on Silicon Graphics workstations. It uses a graphical user interface to design and mix text charts with high-resolution image files. n-Title is particularly adept at building title frames, rolling credits, and still text frames, all frequently used in scientific visualization applications. It has a library of 30 high-resolution fonts which can be customized by the user, including full control over character fill, outline, and drop shadow. Text can be edited with 3-D bevels, color gradients, texture maps, and transparency. Image files in a number of popular formats can be imported to the software for use as a background or character fill. Individual n-Title frames can be sent directly to the Abekas digital video disk for inclusion in a video production. Intentionally Left Blank

18. References

- USA Ballistic Research Laboratory, Advanced Computing Systems. The Ballistic Research Laboratory CAD Package, Release 4.0, vols. 1-5. Aberdeen Proving Ground, MD: 1991.
- Clocksin, W., and C. Mellish. *Programming in Prolog*, 3rd, rev., and extended ed. Berlin: Springer-Verlag, 1987.
- Cray Research Inc. UNICOS Primer, SG-2010 6.0. Mendota Heights, MN: 1990.
- Cray Research Inc. UNICOS Text Editors Primer, SG-2050. Mendota Heights, MN: 1987.
- Cray Research Inc. UNICOS Tape Subsystem User's Guide, SG-2051 6.0. Mendota Heights, MN: 1990.
- Cray Research Inc. UNICOS CDBX Debugger User's Guide, SG-2094 6.0. Mendota Heights, MN: 1990.
- Cray Research Inc. CF77 Compiling System, Volume 3: Vectorization Guide, SG-3073 5.0. Mendota Heights, MN: 1991.
- Cray Research Inc. CF77 Compiling System, Volume 4: Parallel Processing Guide, SG-3074 5.0. Mendota Heights, MN: 1991.
- Cray Research Inc. Compiler Information File (CIF) Reference Manual, SM-2401 1.0. Mendota Heights, MN: 1992.
- Cray Research Inc. Interlanguage Programming Conventions Technical Note, SN-3009. Mendota Heights, MN: 1988.
- Cray Research Inc. UNICOS I/O Technical Note, SN-3075 6.0. Mendota Heights, MN: 1991.
- Cray Research Inc. Segment Loader (SEGLDR) and ld Reference Manual, SR-0066 6.0. Mendota Heights, MN: 1990.
- Cray Research Inc. UNICOS User Commands Reference Manual, SR-2011 6.0. Mendota Heights, MN: 1991.
- Cray Research Inc. UNICOS File Formats and Special Files Reference Manual, SR-2014 6.0. Mendota Heights, MN: 1991.
- Cray Research Inc. UNICOS Performance Utilities Reference Manual, SR-2040 6.0. Mendota Heights, MN: 1991.
- Cray Research Inc. Cray Standard C Programmer's Reference Manual, SR-2074 3.0. Mendota Heights, MN: 1991.
- Cray Research Inc. Volume 1: UNICOS Fortran Library Reference Manual, SR-2079 6.0. Mendota Heights, MN: 1991.
- Cray Research Inc. Volume 2: UNICOS Standard C Library Reference Manual, SR-2080 6.0. Mendota Heights, MN: 1991.
- Cray Research Inc. Volume 3: UNICOS Math and Scientific Library Reference Manual, SR-2081 6.0. Mendota Heights, MN: 1991.
- Cray Research Inc. UNICOS CDBX Symbolic Debugger Reference Manual, SR-2091 6.1. Mendota Heights, MN: 1991.
- Cray Research Inc. UNICOS X Window System Reference Manual, SR-2101 6.0. Mendota Heights, MN: 1990.
- Cray Research Inc. CF77 Compiling System, Volume 1: Fortran Reference Manual, SR-3071 5.0. Mendota Heights, MN: 1991.
- Cray Research Inc. CF77 Compiling System, Volume 2: Compiler Message Manual, SR-3072 5.0. Mendota Heights, MN: 1991.

18 - 2

Lloyd, J. W. Foundations of Logic Programming, 2nd, extended ed. Berlin: Springer-Verlag, 1987.

Precision Visuals, Inc. PicSure: user's guide, release 2. Boulder, CO: 1985.

Stern, Nancy. From ENIAC to UNIVAC, An Appraisal of the Eckert-Mauchly Computers. Bedford, MA: Digital Press, 1981.

Introductory User Guide – May 1993

Appendix A FY93 Charges

Intentionally Left Blank

The ARLSCF provides supercomputing time to Government activities and their contractors. In order to defray operating expenses, the following rate schedule is established for CPU use for fiscal year 1993. There is no charge for memory use, disk storage, and tape use and storage.

A.1 Hourly Usage

Hourly (pay as you go, monthly billing) customers are charged \$350 per effective CPU hour. User-selected priority categories (see the chapter, "Batch Jobs") cause actual CPU hours to be weighted as follows to obtain effective CPU hours.

Nice	Category	Weight
0 - 3	Express	2.0
4 - 12	Normal	1.0
13 - 19	Deferred	0.5

A.2 Subscriptions

Subscriptions provide a means for significant users to obtain a discount, at the cost of paying in advance. There are neither refunds nor carryovers for unused portions. User-selected priority categories cause actual CPU hours to be weighted as in "Hourly Usage" to obtain effective CPU hours.

Subscription	Discounted Rate	Effective CPU Hour Allocation
\$300K	\$300	1000
\$400K	\$250	1600
\$500K	\$200	2500

A.3 Dedicated Time

Dedicated time is charged at \$350 per wall clock hour (including transition time) times the number of CPUs on the machine. The user "owns the machine" and priorities are moot, unless the user is running multiple jobs.

A.4 Billing Questions

Questions about charges, billing, and fund transfers should be referred to the Billing Coordinator listed in Appendix B.

Appendix A – FY93 Charges

Intentionally Left Blank

Appendix B Points of Contact

Appendix B – Points of Contact

Intentionally Left Blank

B.1 Requests for Accounts

Users should send their requests for accounts either by electronic mail to crayca@arl.army.mil or by post to:

Director U.S. Army Research Laboratory ATTN: STEAP-IM-AC (Sharon Amerg) Aberdeen Proving Ground, MD 21005-5067

B.2 Points of Contact

The following is a list of points of contact for various problems or questions that may arise:

Electronic mail forum	craysupport@arl.army.mil	problems, questions, discussion
Cray System Administrator	Mr. John Cole (410)278-9276 sys–admin–xmp@arl.army.mil or sys–admin–cray2@arl.army.mil	
Asst. Cray System Administrator	Mr. Mark Williams (410)278-6664 sys–admin–xmp@arl.army.mil or sys–admin–cray2@arl.army.mil	
Computer Operators	operators@arl.army.mil Cray X–MP/48: (410)278-6829 Cray–2: (410)278-6642	file restorations and tape mounts
adm.arl.army.mil System Administrator	Mr. James Fielding (410)278-6664 sys–admin–adm@arl.army.mil	
Cray Account Administrator	Ms. Sharon Amerg (410)278-6819 crayca@arl.army.mil	new accounts and clearance verification
Billing Coordinator	Ms. Judy Kelly (410)278-2820 judy@arl.army.mil	billing and fund transfer information
Secure Computer Access Team Leader	Mr. David Towson (410)278-6271 scat@arl.army.mil	
Scientific Support Team Leader	Ms. Denice Brown (410)278-6269 denice@arl.army.mil	

Appendix B - Points of Contact

UNIX Support Team Leader	Ms. Lee Ann Brainard (410)278-6664 leeann@arl.army.mil
Information System Security Officer (ISSO)	Ms. Joan Ege (410)278-6265 ege@arl.army.mil
Asst. ISSO	Ms. Shirley Herbert (410)278-6276 shirl@arl.army.mil
Chief, Computational Support Branch	Ms. Linda Baldwin (410)278-7091 baldwin@arl.army.mil
Chief, High Performance Computing & Communications Branch	Mr. Robert Cahoon (410)278-6320 rmc@arl.army.mil

٠

List of Abbreviations

AHPCRC	Army High Performance Computing Research Center
AMC	Army Materiel Command
AMSAA	Army Materiel Systems Analysis Activity
ANSI	American National Standards Institute
APG	Aberdeen Proving Ground
ARL	Army Research Laboratory
ARLSCF	Army Research Laboratory SuperComputer Facility
ARPAnet	Advanced Research Projects Agency network
AT&T	American Telephone and Telegraph
AVCO	name of company
AVS	Advanced Visual Systems (product name)
BLAS	Basic Linear Algebra Subroutines
bpi	bits per inch
BRL	Ballistic Research Laboratory
BRLESC	Ballistic Research Laboratory Electronic Scientific Computer
BRLLIB	Ballistic Research Laboratory library
BRLnet	Ballistic Research Laboratory network
BSD	Berkeley Software Distribution
BSS	a particular kind of memory allocation on Cray computers
BYU	Brigham Young University
CA	Computer Associates
CAD	Computer Aided Design
CAL	Cray Assembly Language
CDC	Control Data Corporation
CDT	Central Daylight Time
CGM	Computer Generated Metafile
CPU	Central Processing Unit
CSG	Combinatorial Solid Geometry
DDN	Defense Data Network
DEC	Digital Equipment Corporation
DISSPLA	Display Integrated Software System and Plotting LAnguage
DoD	Department of Defense
DSN	Defense Switched Network
DSNET1	Defense Secure Network 1
EA	extended addressing, a feature of certain Cray computers
EDT	Eastern Daylight Time
EDVAC	Electronic Discrete Variable Automatic Computer, an early computer
EISPACK	Eigensystem Package
EMA	extended memory addressing, a feature of certain Cray computers
EOF	end of file
EST	Eastern Standard Time
FTP	File Transfer Protocol
GB	gigabyte
GKS	Graphical Kernel System
GUI	Graphical User Interface
HDF	Hierarchical Data Format
HP	Hewlett Packard
HULL	name of computer code; no meaning
HULL	nume of computer code, no meaning

IBM	International Business Machines
id	identification, as in "id number"
IEEE	Institute of Electrical and Electronics Engineers
IMSL	International Mathematical and Statistical Libraries
I/O	input/output
IPI	Intelligent Peripheral Interface
ISSO	Information System Security Officer
Kbyte	kilobyte
LAN	local area network
LINDO	Linear, INteractive, Discrete Optimizer
LINPACK	Fortran subroutine package for solving systems of linear equations
MB	megabyte
MGED	Multidevice Graphics EDitor
MILnet	Military network
MIL-STD	Military Standard
MIT	Massachusetts Institute of Technology
MPGS	MultiPurpose Graphics System (Cray software)
MSC	MacNeal-Schwendler Corporation
MW	megaword
NASA	National Aeronautics and Space Administration
NIST	National Institute of Science and Technology
NQS	Network Queuing System
NSFnet	National Science Foundation network
NTSC	National Television Systems Committee
PACX	Public Access Computer eXchange
PC	IBM's version of personal computer, or one compatible therewith
PVI	Precision Visuals, Inc.
RDEC	Research, Development, and Engineering Center
RGB	red, green, blue
SCSI	Small Computer Serial Interface
SGI	Silicon Graphics, Inc.
SOP	Standard Operating Procedure
SP	Standard Play (VHS usage) or Superior Performance (U-matic and Betacam usage)
stderr	standard error
stdin	standard input
stdout	standard output
TAC	Terminal Access Controller
TCP/IP	Transmission Control Protocol/Internet Protocol
VAX	Virtual Address eXtension, a family of DEC computers
VCR	Video Cassette Recorder
VTR	Video Tape Recorder

(Unclass.

No. of		No. of	
<u>Copies</u>	Organization	Copies	Organization
2	Administrator Defense Technical Info Center ATTN: DTIC-DDA Cameron Station	1	Commander U.S. Army Missile Command ATTN: AMSMI-RD-CS-R (DOC) Redstone Arsenal, AL 35898-5010
	Alexandria, VA 22304-6145	1	Commander U.S. Army Tank-Automotive Command
1	Commander U.S. Army Materiel Command ATTN: AMCAM 5001 Eisenhower Ave.		ATTN: ASQNC-TAC-DIT (Technical Information Center) Warren, MI 48397-5000
	Alexandria, VA 22333-0001	1	Director
1	Director U.S. Army Research Laboratory ATTN: AMSRL-OP-CI-AD, Tech Publishing		U.S. Army TRADOC Analysis Command ATTN: ATRC-WSR White Sands Missile Range, NM 88002-5502
	2800 Powder Mill Rd. Adelphi, MD 20783-1145	1	Commandant U.S. Army Field Artillery School ATTN: ATSF-CSI Ft. Sill, OK 73503-5000
1	Director U.S. Army Research Laboratory ATTN: AMSRL-OP-CI-AD, Records Management 2800 Powder Mill Rd. Adelphi, MD 20783-1145	(Class. only)]	Commandant U.S. Army Infantry School ATTN: ATSH-CD (Security Mgr.) Fort Benning, GA 31905-5660
•	•	(Unclass. only)]	Commandant
2	Commander U.S. Army Armament Research, Development, and Engineering Center ATTN: SMCAR-IMI-I Picatinny Arsenal, NJ 07806-5000		U.S. Army Infantry School ATTN: ATSH-CD-CSO-OR Fort Benning, GA 31905-5660
2	Commander	1	WL/MNOI Eglin AFB, FL 32542-5000
	U.S. Army Armament Research, Development, and Engineering Center ATTN: SMCAR-TDC		Aberdeen Proving Ground
-	Picatinny Arsenal, NJ 07806-5000	2	Dir, USAMSAA ATTN: AMXSY-D
1	Director Benet Weapons Laboratory		AMXSY-MP, H. Cohen
	U.S. Army Armament Research, Development, and Engineering Center ATTN: SMCAR-CCB-TL	1	Cdr, USATECOM ATTN: AMSTE-TC
	Watervliet, NY 12189-4050	1	Dir, ERDEC ATTN: SCBRD-RT
s.only)]	Commander U.S. Army Rock Island Arsenal ATTN: SMCRI-IMC-RT/Technical Library Rock Island, IL 61299-5000	1	Cdr, CBDA ATIN: AMSCB-CI
1	Director	1	Dir, USARL ATTN: AMSRL-SL-I
-	U.S. Army Aviation Research and Technology Activity ATTN: SAVRT-R (Library) M/S 219-3 Ames Research Center Moffett Field, CA 94035-1000	10	Dir, USARL ATTN: AMSRL-OP-CI-B (Tech Lib)
	·		

Intentionally Left Blank

USER EVALUATION SHEET/CHANGE OF ADDRESS

This Laboratory undertakes a continuing effort to improve the quality of the reports it publishes. Your comments/answers to the items/questions below will aid us in our efforts.

1. ARL Report Number ARL-TR-150 Date of Report June 1993

2. Date Report Received

3. Does this report satisfy a need? (Comment on purpose, related project, or other area of interest for which the report will be used.)

4. Specifically, how is the report being used? (Information source, design data, procedure, source of ideas, etc.)______

5. Has the information in this report led to any quantitative savings as far as man-hours or dollars saved, operating costs avoided, or efficiencies achieved, etc? If so, please elaborate.

6. General Comments. What do you think should be changed to improve future reports? (Indicate changes to organization, technical content, format, etc.)

Organization

Name

CURRENT ADDRESS

OLD ADDRESS

City, State, Zip Code

Street or P.O. Box No.

7. If indicating a Change of Address or Address Correction, please provide the Current or Correct address above and the Old or Incorrect address below.

Organization			
Name	·····-	<u></u>	
Street or P.O. Box No.		<u></u>	
City, State, Zip Code			

(Remove this sheet, fold as indicated, tape closed, and mail.) (DO NOT STAPLE) DEPARTMENT OF THE ARMY

OFFICIAL BUSINESS

BUSINESS REPLY MAIL FIRST CLASS FERMIT NO 0001, APG, MD

Postage will be paid by addressee.

Director U.S. Army Research Laboratory ATTN: AMSRL-OP-CI-B (Tech Lib) Aberdeen Proving Ground, MD 21005-5066 NO POSTAGE NECESSARY IF MAILED IN THE UNITED STATES